
Design Matrix Uncertainty: Robust Optimization
and Approximate MLE Approaches

Richard J. Clancy and Stephen Becker

University of Colorado at Boulder
Department of Applied Mathematics

July 21st
SIAM OPT 2021

1 / 35



Outline

Problem setup

Robust least squares

Approximate maximum likelihood estimation

2 / 35



Table of Contents

Problem setup

Robust least squares

Approximate maximum likelihood estimation

3 / 35



Problem Setup

We consider the generative model y = Ax + η

I A ∈ Rm×n, design/data matrix

I η ∈ Rm, additive noise

I x ∈ Rn, model parameters

I y ∈ Rm, measurements

Given measurements y and design A, estimate x . Consider
over-determined case where m > n.
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Example: Estimating home prices

Generative model y = Ax + η

Example

I A ∈ Rm×2

• Column 1: Home size (1366 sqft)
• Column 2: Lot size (5036 sqft)

I y ∈ Rm: selling price for corresponding home ($207k)

I Each row is data for a particular home

I GOAL: Estimate parameters x to predict home price given
info about home and lot size.
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Ordinary least squares

Mismatch between modeled and true data given by η = Ax − y .

Ordinary least squares (OLS): minimize residual sum of squares

min
x
‖Ax − y‖22.

Closed form solution of xOLS = (ATA)−1ATy .

Implicitly assumes Gaussian noise.
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Uncertain design matrix

CONCERN: Assumes A is known precisely!!!

In practice, it is uncommon to know A with certainty. Causes are

I precision limits in measurement (dynamic range of sensor)

I truncation for memory savings (fixed number of sig. figs.)

I subjective features (survey responses)

I modeling error (features are approximate functions of data)
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Example: Estimating home prices with uncertain data

Given the generative model y = Ax + η, where A and η are both
uncertain, estimate x .

Example

I A ∈ Rm×2,
• Column 1: Rounded home size (//////1366 1400 sqft)
• Column 2: Rounded lot size (/////5036 5000 sqft).

I y ∈ Rm selling price for corresponding home ($207k)

I Each row is data for a particular home

I GOAL: Estimate parameters x to predict home price given
uncertain info about home and lot size.
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Total least squares

Total least squares considers uncertainty in A as well and solves

min
U,η,x

∥∥[U ,η]
∥∥
F

subject to (A + U)x = y + η.

I Closed form solution of xTLS = (ATA− s2n+1I )−1ATy where

sn+1 is the smallest singular value of [A, y ] ∈ Rm×(n+1)

[H. Golub and F. van Loan, 1980].

I TLS is always worse conditioned than OLS (which is known to
be poorly conditioned)

I Often performs poorly in practice...need better method
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Our contribution

To address limitations of existing methods for regression with
uncertain design matrices, we present two methods:

1. using box-constrained robust optimization, and

2. an approximate MLE framework based on the saddle point
approximation from complex analysis.

Both approaches allow us to move away from implicit/explicit
assumptions of Gaussianity and provides data scientists with more
tools for handling model uncertainty.
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Robust optimization

Robust optimization (RO) seeks optima over all realizations of
uncertain data

min
x

max
U ∈U

f (x ,U)

where U is an uncertainty set and f is a real-valued function.

I Noise comes from a bounded set

I Uncertainty has geometric rather than distributional
interpretation (can be viewed as uniform noise over set)

I Considers “worst-case” data
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Robust least squares

Let f (x ,U) = ‖(A + U)x − y‖2 and solve the robust least squares
problem

min
x

{
max
‖U‖∞≤δ

∥∥(A + U)x − y
∥∥2︸ ︷︷ ︸

F (x)

}

where ‖U‖∞ is the largest magnitude element of matrix U .
Parameter δ can be inferred from observed data.

Other works in robust least squares:

I constrained Frobenius norm [El Ghaoui and Lebret, 1997],

I constrained 1-norm [Xu et al., 2010],

I and more [Bertsimas et al., 2011].
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Reformulate objective

Must optimize

min
x

{
max
‖U‖∞≤δ

∥∥(A + U)x − y
∥∥2︸ ︷︷ ︸

F (x)

}
.

Theorem
The inner maximization can be written as

F (x) = ‖Ax − y‖2 + 2 δ‖x‖1 ‖Ax − y‖1 + m δ2 ‖x‖21.

with the argmax given by U∗x = δ · sign
(
x(Ax − y)T

)
for a fixed x .
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Tractability

Rewrite robust least squares as

min
x

{
‖Ax − y‖2 + 2 δ‖x‖1 ‖Ax − y‖1 + m δ2 ‖x‖21

}︸ ︷︷ ︸
F (x)

.

Not differentiable, but convex since max of convex functions.

Lemma
Element of subdifferential given by

F ′(x) = 2(A + U∗x)T [(A + U∗x)x − y ] ∈ ∂F (x).

Access to subdifferential → tractable
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Algorithms

For non-smooth problems, appropriate to use:

I Subgradient method

I Bundle method

In practice, slow to converge.

Quasi-Newton methods performed well with considerable speed-up
and were used for numerical experiments.
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Numerical Experiments

min
x

{
‖Ax − y‖2 + 2 δ‖x‖1 ‖Ax − y‖1 + m δ2 ‖x‖21

}
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Figure: Left: mean relative error e = ‖x − x̂‖/‖x‖ over 10k simulations
for different estimators as a function of quantization level. Right:
empirical PDF for errors of different methods.
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Maximum likelihood estimation

Once again, start with the generative model

y = Gx + η

I G ∈ Rm×n, random/uncertain design matrix

I η ∈ Rm, additive noise

I x ∈ Rn, model parameters

I y ∈ Rm, measurements

Unlike robust LS, we assume distributional knowledge of G and η,
use to find PDF of y
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Maximum likelihood estimation

Maximum likelihood estimation (MLE) works as follows:

I Observe measurements y from some distribution Py
determined by distributions PG and Pη

I Form likelihood function from PDF of y , i.e. L(x) = fY (y ; x),
where fY (y ; x) is the PDF of y

I What parameters x best explain observed data y?

I Find out by maximizing the likelihood function

argmax
x

{L(x) = fY (y ; x)}
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Maximum likelihood estimation

I We assume independence of Gij ’s and ηi ’s throughout, implies
independence of yi ’s

I When components of y are independent, we can split PDF

fY (y ; x) =
m∏
i=1

fYi
(yi ; x)

I Focus on maximizing the log-likelihood function

x̂MLE = argmax
x

{
m∑
i=1

ln [fYi
(yi ; x)]

}
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Justification of MLE for regression problem

For additive noise models y = Ax + η where A is known precisely

I ‖Ax − y‖22, negative log-likelihood for Gaussian noise (OLS)

I ‖Ax − y‖1, negative log-likelihood for Laplacian noise

I ‖Ax − y‖∞, negative log-likelihood for uniform noise

I For uncertainty in operator, solving TLS problem

min
x ,U,η

‖[U , η]‖F

Subject to (A + U)x = y + η

yields MLE for i.i.d. Gaussian in U and η
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MLE for uncertainty in design matrix

I GOAL: find PDF for y = Gx + η to form a likelihood function

I Each component can be rewritten as a sum of random
variables, i.e., yi = gT

i x + ηi =
∑n

j=1 Gijxj + ηi
I PDFs for sums of random variables are challenging to derive

since they require convolutions

Example

Let Z ∼ N (0, 1) and U ∼ Uniform(0, 1). The PDF for U + Z is

fU+Z (t) =
1√
2π

∫ 1

0
e−(t−s)

2/2 ds.

No analytic form!

23 / 35



Moment generating functions

I The moment generating function (MGF) is a bilateral Laplace
transform of PDF

MY (t) = E(etY )

I When MGF exists, it uniquely characterizes the distribution
I Useful properties: for independent random variables

U and Z and a ∈ R

MaU+Z (t) = MU(at)MZ (t),

with MGFs, convolution → multiplication

Example

Let Z ∼ N (0, 1) and U ∼ Uniform(0, 1). The MGF for U + Z is

MU+Z (t) =
(et − 1)e−t

2/2

t
.

No need for quadrature
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Moment generating functions

I Using properties of MGFs,

MYi
(t) = MgT

i x+ηi (t) = Mηi (t)
n∏

j=1

MGij
(txj)

Express complicated MGF for Yi as the product of univariate
MGFs for Gij and ηi .

I By inverting transform for MYi
, we can recover density, but

difficult in practice

I Approximate PDF instead
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Density approximation

Options to approximate PDFs:
I Kernel density estimation : data intensive
I Edgeworth series: poor tail behavior (poly. series)
I Saddle point approximation [Daniels, 1954, Strawderman

et al., 1996]: uses complex analysis, works well in practice

0

Figure: True density and several approximations for y = gTx + η
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Saddle point approximation

Saddle point approximation for PDF of Y is

fY (y) ≈

√
1

2πK ′′Y (t0)
eKY (t0)−yt0

I KY (t) = lnMY (t) is Cumulant Generating Function (CGF)

I t0 is the solution to K ′Y (t)− y = 0 (use Newton’s method)
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Approximate MLE

Using the saddle point approximation and eliminating constants, write
the approximate log-likelihood function, `(x) ≈ ln L(x), as

`(x) =
m∑
i=1

ln

{√
1

K ′′Yi
(ti )

eKYi
(ti )−yi ti

}
︸ ︷︷ ︸

≈ constant · fYi (yi )

=
m∑
i=1

{
KYi (ti )− tiyi −

1

2
ln
(
K ′′Yi

(ti )
)}

=
m∑
i=1

[
KgT

i x+ηi (ti (x))− 1

2
ln
(
K ′′gT

i x+ηi (ti (x))
)
− ti (x)yi

]
.

where gT
i is i th row of G and ti (x) is solution to K ′gT

i x+ηi
(t) = yi .
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Optimization problem

The approximate MLE can be cast generically in vector form

argmax
x,t

1T

(
KGx+η(t)− 1

2
ln
(
K ′′Gx+η(t)

))
− tTy

subject to K ′Gx+η(t) = y

Example
When G ∼ Uniform(H − δ11T ,H + δ11T ) and η ∼ N (0, σ2I ),

argmax
x,t

tT
(σ2

2
t+H x − y

)
+ 1T ln

[
sinh

(
δtxT

)
�
(
δtxT

)]
1

−1

2
1T ln

[
σ2 1− δ2 csch2

(
δtxT

)
x2
]

Subject to σ2t+Hx + δ coth
(
δtxT

)
x − n(1� t) = y .
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Gradients

Despite constraint requiring a numeric solve, have gradients.

Letting q(x , t) = K ′Gx+η(t)− y be our constraint, using the chain
rule and implicit differentiation we have

∇x` =
∂`

∂x
−
(
∂`

∂t

)(
∂q
∂t

)−1(∂q
∂x

)
.

Unimportant, but for completeness, each factor is given by:

∂`

∂x
= 1T

(
∂

∂x
KGx+η(t)− 1

2

{
diag

(
K ′′Gx+η(t)

)}−1 ∂

∂x
K ′′Gx+η(t)

)
∂`

∂t
=

(
K ′Gx+η(t)− 1

2

(
K ′′′Gx+η(t)� K ′′Gx+η(t)

)
− y

)T

∂q
∂t

= diag
(
K ′′Gx+η(t)

)
,

∂q
∂x

=
∂

∂x
K ′Gx+η(t).
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Numerical experiments
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Figure: Median relative error over 1, 000 simulations as number of rows
increase for fixed number of colums in design matrix.
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Numerical Experiments

AML (proposed) OLS TLS
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Figure: Error metrics for simulations G ∈ R55×50. Left: box-plot of
relative error for different methods. Right: histogram of error ratio
‖xAML − xTRU‖/‖xOLS − xTRU‖. Values less than 1 indicate AML
outperformed competing method for identical data.
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Summary

I Motivated the need for solving regression problems with
uncertain design matrices.

I Formulated and solved a robust least squares problem that is
well suited for regression problems with data subject to
quantization error.

I Derived an approximate MLE function and provided its
gradient. Ideal for regression problems with different noise
models across features.
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Thank you for your time!

I Stephen Becker, and Richard J. Clancy. “Robust least squares
for quantized data matrices.” Signal Processing 176 (2020)
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