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Problem Setup

We consider the generative model y = Ax +n
> A c R™" design/data matrix
> 7 € R™, additive noise
> x € R”, model parameters
>

y € R™, measurements

Given measurements y and design A, estimate x. Consider
over-determined case where m > n.
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Example: Estimating home prices

Generative model y = Ax +n

Example

> AeRmX2

® Column 1: Home size (1366 sqft)
® Column 2: Lot size (5036 sqft)

» y € R™: selling price for corresponding home ($207k)
» Each row is data for a particular home

» GOAL: Estimate parameters x to predict home price given
info about home and lot size.
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Ordinary least squares

Mismatch between modeled and true data given by n = Ax — y.

Ordinary least squares (OLS): minimize residual sum of squares

min | Ax — y|3.
X

Closed form solution of xoLs = (AT A)"1ATy.

Implicitly assumes Gaussian noise.
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Uncertain design matrix

CONCERN: Assumes A is known precisely!!!

In practice, it is uncommon to know A with certainty. Causes are
» precision limits in measurement (dynamic range of sensor)
» truncation for memory savings (fixed number of sig. figs.)
> subjective features (survey responses)

» modeling error (features are approximate functions of data)
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Example: Estimating home prices with uncertain data

Given the generative model y = Ax + 1, where A and 7 are both
uncertain, estimate x.

Example
> Ac RmX2,

® Column 1: Rounded home size (1366 1400 sqft)
® Column 2: Rounded lot size (3036 5000 sqft).

» y € R™ selling price for corresponding home ($207k)
» Each row is data for a particular home

» GOAL: Estimate parameters x to predict home price given
uncertain info about home and lot size.
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Total least squares

Total least squares considers uncertainty in A as well and solves
i U
gin. ltv.mll -
subject to (A+U)x=y+n.

> Closed form solution of xtis = (ATA—s2,;1)"LATy where

Snt+1 is the smallest singular value of [A,y] € Rm*(n+1)
[H. Golub and F. van Loan, 1980].

» TLS is always worse conditioned than OLS (which is known to
be poorly conditioned)

» Often performs poorly in practice...need better method
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Our contribution

To address limitations of existing methods for regression with
uncertain design matrices, we present two methods:

1. using box-constrained robust optimization, and

2. an approximate MLE framework based on the saddle point
approximation from complex analysis.

Both approaches allow us to move away from implicit/explicit
assumptions of Gaussianity and provides data scientists with more
tools for handling model uncertainty.
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Robust optimization

Robust optimization (RO) seeks optima over all realizations of
uncertain data

min max f(x,U)
x UelU

where U is an uncertainty set and f is a real-valued function.

» Noise comes from a bounded set

» Uncertainty has geometric rather than distributional
interpretation (can be viewed as uniform noise over set)

» Considers “worst-case” data
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Robust least squares

Let f(x, U) = ||[(A+ U)x — y||? and solve the robust least squares
problem

, 2
min { ||Urﬂixgé [(A+ U)x — y| }

F(x)
where ||U||« is the largest magnitude element of matrix U.
Parameter § can be inferred from observed data.
Other works in robust least squares:
» constrained Frobenius norm [El Ghaoui and Lebret, 1997],
» constrained 1-norm [Xu et al., 2010],
» and more [Bertsimas et al., 2011].
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Reformulate objective

Must optimize

min{ max_[|(A+ U)x — y| }

x (|Ullc<o

Theorem
The inner maximization can be written as

F(x) = | Ax = ylI* + 26| x]|1 | Ax — yll1 + m 62 ||x]|3.

with the argmax given by Uy, = ¢ - sign (x(Ax — y)T) for a fixed x.
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Tractability

Rewrite robust least squares as

min {[|[Ax — y||* +20]|x||1 | Ax — yll1 + m® |Ix||5} .

F(x)

Not differentiable, but convex since max of convex functions.

Lemma
Element of subdifferential given by

F'(x)=2(A+ U)T[(A+ U)x — y] € OF(x).

Access to subdifferential — tractable
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Algorithms

For non-smooth problems, appropriate to use:
» Subgradient method
» Bundle method

In practice, slow to converge.

Quasi-Newton methods performed well with considerable speed-up
and were used for numerical experiments.
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Numerical Experiments

min {[|Ax — y|* +24|x||1 [|Ax — y|l1 + m&* || x|7}

Q ization Level 0s iri ility Density
10
~#— RO (proposed) = RO (proposed)
oLs oLs
~§--MDP sk —-=-MDP
-B&-GeV =-=-GCV

TLS

Mean relative error

3 -
Round to digit Component-wise error

Figure: Left: mean relative error e = ||x — X||/||x|| over 10k simulations
for different estimators as a function of quantization level. Right:
empirical PDF for errors of different methods.
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Maximum likelihood estimation

Once again, start with the generative model

y=Gx+n

» G € R™*" random/uncertain design matrix
> 1 € R™, additive noise
» x € R"”, model parameters

> y € R™, measurements

Unlike robust LS, we assume distributional knowledge of G and n,
use to find PDF of y
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Maximum likelihood estimation

Maximum likelihood estimation (MLE) works as follows:
» Observe measurements y from some distribution P,
determined by distributions Pg and Py,

» Form likelihood function from PDF of y, i.e. L(x) = fy(y; x),
where fy(y; x) is the PDF of y

» What parameters x best explain observed data y?

» Find out by maximizing the likelihood function

argTax {L(x) = fy(y; x)}
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Maximum likelihood estimation

» We assume independence of Gj;'s and 7);'s throughout, implies
independence of y;'s

» When components of y are independent, we can split PDF

fr(yix) =] f.(viix)

i=1

» Focus on maximizing the log-likelihood function

XMLE = argrpax {Z In [fy,(yi; x)]}

i=1
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Justification of MLE for regression problem

For additive noise models y = Ax + n where A is known precisely

> ||Ax — y||3, negative log-likelihood for Gaussian noise (OLS)
> ||Ax — y||1, negative log-likelihood for Laplacian noise

» ||Ax — y||oo, negative log-likelihood for uniform noise

» For uncertainty in operator, solving TLS problem

[ u
mn Ul

s &

Subjectto (A+U)x=y+n

yields MLE for i.i.d. Gaussian in U and 7
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MLE for uncertainty in design matrix

» GOAL: find PDF for y = Gx + n to form a likelihood function

» Each component can be rewritten as a sum of random
variables, i.e., y; = g,Tx +ni = Z}’Zl Gijxj +ni

» PDFs for sums of random variables are challenging to derive
since they require convolutions

Example

Let Z ~ N(0,1) and U ~ Uniform(0,1). The PDF for U+ Z is

1 1
fusz(t) = Nl e (t=90°/2 g,

No analytic form!
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Moment generating functions

» The moment generating function (MGF) is a bilateral Laplace
transform of PDF

My (t) = E(e")

» When MGF exists, it uniquely characterizes the distribution
» Useful properties: for independent random variables
Uand Zand ae R
M3U+Z(t) = Mu(at)/\/’z(t),
with MGFs, convolution — multiplication
Example

Let Z ~ N(0,1) and U ~ Uniform(0,1). The MGF for U + Z is
et —1)e /2
My z(r) = &1

t
No need for quadrature
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Moment generating functions

» Using properties of MGFs,
MY( )= Mngx+17( Mni(t)HMG,j(th)

Express complicated MGF for Y; as the product of univariate
MGFs for Gj; and 7).

» By inverting transform for My,, we can recover density, but
difficult in practice

» Approximate PDF instead
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Density approximation

Options to approximate PDFs:
: data intensive

» Kernel density estimation :
» Edgeworth series: poor tail behavior (poly. series)

» Saddle point approximation [Daniels, 1954, Strawderman
et al., 1996]: uses complex analysis, works well in practice

Probability Density Function Approximations

Density

Random Variable

Figure: True density and several approximations for y = g"x + 17
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Saddle point approximation

Saddle point approximation for PDF of Y is

1
£ ~ Ky (to)—yto
Y k) ©

» Ky(t) =InMy(t) is Cumulant Generating Function (CGF)
>ty is the solution to K{,(t) —y = 0 (use Newton's method)
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Approximate MLE

Using the saddle point approximation and eliminating constants, write
the approximate log-likelihood function, ¢(x) ~ In L(x), as

n el (t)—yiti
e

~ constant - fy, (vi)
m 1
Z{Ky E'“ (KQ(D))}

zl_n: l: &l x+77’ (x)) = ; In (Ké/, x+n,(t (X))) - t,-(x)y,-:| .

where g is i*" row of G and t;(x) is solution to K} T (1) = ¥
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Optimization problem

The approximate MLE can be cast generically in vector form

argmax 17 (KGx+77(t) Y In (Kgxsn(t ))) —t'y

x,t

subject to Ké;x+7](t) =Yy

Example
When G ~ Uniform(H — 6117, H + §117) and n ~ N(0, o21),

2
argmax tT(% t+Hx —y) +17 In[sinh (5txT) @ (5txT)] 1

x,t
—%]IT In [02 1 — 6% csch? (5th) x2]

Subject to o’t+Hx + dcoth (6tx")x —n(L o t) = y.
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Gradients

Despite constraint requiring a numeric solve, have gradients.

Letting q(x, t) = Kg,,,,(t) — ¥ be our constraint, using the chain
rule and implicit differentiation we have

o (o (9q\ T [(0q
w5 () (51) (56):

Unimportant, but for completeness, each factor is given by:

or 0 1. . _

Ix =17 ((%(KGX_H’(t) ) {d'ag (Kgx+n )} Gx+77 t)>
ot T

Gt = (Koo~ 3 (KEeon() 2 Keon(0) - y)

aq .

E = dlag (Kgx+n(t)) )

oq 0

x &K&Hn(t)'
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Numerical experiments

Median relative error vs. row/column ratio

Exponential clipping Gaussian
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Figure: Median relative error over 1,000 simulations as number of rows
increase for fixed number of colums in design matrix.
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Numerical Experiments

_ Box plots for relative error ) Histogram of error ratios
Exponential clipping aussian AML over OLS AML over TLS
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Figure: Error metrics for simulations G € R>*50, Left: box-plot of
relative error for different methods. Right: histogram of error ratio
HXAML — XTRU”/HXOLS — XTRUH- Values less than 1 indicate AML
outperformed competing method for identical data.
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Summary

> Motivated the need for solving regression problems with
uncertain design matrices.

» Formulated and solved a robust least squares problem that is
well suited for regression problems with data subject to
quantization error.

» Derived an approximate MLE function and provided its
gradient. ldeal for regression problems with different noise
models across features.
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Thank you for your time!
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