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This dissertation broadly focuses on incorporating uncertainty into mathematical models and

can be broken into three distinct sections. In the first (Ch. 2 and 3), we consider design matrix

uncertainty for linear regression. The motivation is that many regressors or covariates used to

build linear models, such as survey responses and other data subjective in nature, are intrinsically

uncertain. We approach the problem from two angles: 1) using robust optimization and 2) an

approximation method to construct an otherwise cumbersome objective for maximum likelihood

estimation. Expressions for (sub)gradients are provided allowing for the use of efficient solvers. We

illustrate the merit of both methods on synthetic data.

In the second section (Ch. 4 and 5), we focus on novel trust region methods that accept

uncertainty in objective and gradient evaluations to reduce the computational burden. We introduce

an algorithm named TROPHY (Trust Region Optimization using a Precision HierarchY) which

uses variable precision arithmetic to reduce communication, storage, and energy costs. The other

project uses a Hermite interpolation based framework to build model objectives using function and

derivative information. Since not all partial derivatives are available or are expensive to compute, we

make use of uncertain gradients to improve performance beyond standard interpolation methods.

We also propose the use of sketching to ameliorate issues with redundant data and reduce the

burden of inverting very large matrices.

The final section (Ch. 6) investigates how operator uncertainty impacts the ability to solve

inverse problems accurately. Our goal is to localize regions of brain activity using optically pumped

magnetometers which are novel sensors that show promise for use in magnetoencephalography.

Through a series of simulations, we establish guidelines for sensor count, noise level, and forward

model fidelity needed to localize brain activity to a specified accuracy.
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Chapter 1

Introduction

Having worked on broad range of problems throughout my Ph.D. including convex optimiza-

tion, numerical methods, blind source separation, and inverse problems, I struggled to choose a title

that would tie them together. A unifying theme touching every project in some form is uncertainty.

Typically, uncertainty is an obstacle that must be overcome. One method to handle uncertainty is

to act as though it doesn’t exist.

As a cautionary tale, consider the simple problem of floating point arithmetic. Unlike real

arithmetic, floating point addition isn’t associative, i.e., fl((a+ b) + c) ̸= fl(a+ (b+ c)). Although

the effects of round-off error are well documented for matrix inversion [Golub and Van Loan, 1996]

and catastrophic cancellation for division [Goldberg, 1991], simple addition poses less of a concern.

At Los Alamos National Laboratory, I was charged with the task of characterizing round-off

error for large summations. To develop intuition, we looked at the CLAMR simulation that models

a cylindrical damn breaking with boundary conditions. The system is propagated in time via the

state update equation,

Ui+1 = Ui −
∆t

∆r

(
F+ − F− +G+ −G−)+ (w+

x − w−
x + w+

y − w−
y

)
. (1.1)

We considered three common data types: half, single and double precision using 11, 24, and 53 bits

for the mantissa, respectively. Half (single) precision has a dynamic range of approximately 4 (7)

orders of magnitude. In half precision floating point arithmetic, 1×104 + 1 = 1×104 ̸= 1.0001×104.

To understand the frequency of dropped summands, we looked at the difference in exponents (base
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Figure 1.1: CDF for the difference in logarithms of magnitudes (orders of magnitude difference)
between terms Ui, F+, and w+

x terms. Vertical lines show threshold over which a term in the
sum is lost due to limited dynamic range of floating point arithmetic using half, single, and double
precision for Eq. 1.1.

10) between Ui and both the F+ and w+
x terms for each state update. An empirical cumulative

density of function (CDF) for the difference in exponents over the course of the simulation is shown

in Figure 1.1. We found that due to the limited dynamic range of floating point data types, 3% of all

sums between w, F and U terms were completely lost when using double precision, 20% were lost

when using single precision, and astoundingly, over 70% of all computations where lost when using

half precision! This remarkable result illustrates the significance of imprecision in computational

mathematics. It is clear that uncertainty must be accounted for.

A central focus of this dissertation is how to solve linear regression problems when the design

matrix is subject to uncertainty. That is, given y and A, find parameters x that best explains

observations y = Ax + z. We assume that z is an unobserved random variable similar to the

classical setting, but also assume that A is either random or only approximately known.

In Chapter 2, which is based on work published in Signal Processing1 , we formulate and

solve a robust least squares problem for a system of linear equations subject to quantization error

in the data matrix. We are motivated by the fact that ordinary least squares fails to consider

1 Becker, S. and Clancy, R.J., 2020. Robust least squares for quantized data matrices. Signal Processing, 176,
p.107711.
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uncertainty in the design matrix, modeling all noise in the observed signal. Total least squares

accounts for uncertainty in the data matrix, but necessarily increases the condition number of the

operator compared to ordinary least squares which is undesirable. Tikhonov regularization or ridge

regression is frequently employed to combat ill-conditioning, but requires parameter tuning which

presents a host of challenges and places strong assumptions on parameter prior distributions. The

proposed method also requires selection of a parameter, but it can be chosen in a natural way,

e.g., a matrix rounded to the 4th digit uses an uncertainty bounding parameter of 0.5× 10−4. We

show that our robust method is theoretically appropriate, tractable, and performs favorably against

ordinary and total least squares.

We consider an alternative approach to the regression problem in Chapter 3 drawing on ideas

from complex and Fourier analysis. Assuming that the design matrix is a random variable with

independent components, we use the saddle point method to construct an approximate probability

density, and by extension, log-likelihood function to estimate model parameters. We once again

compare it to classical methods with different noise settings. This work is currently posted on

arXiv2 .

The next two chapters focus on using uncertainty in trust region methods to improve algorith-

mic performance. Chapter 4 investigates the use of partial, incomplete, or infrequently computed

gradient information to accelerate convergence for interpolation based models. Although we don’t

know the gradient at each step making first order methods impossible, we would like to use deriva-

tive information to improve our surrogate model when possible. We propose an algorithm and show

that it improves the performance of interpolation based methods and allows for model flexibility.

Returning to our cautionary tale, we recognize that despite the loss of accuracy, the use

of reduced precision data types can lighten the computational load. We introduce the TROPHY

algorithm (Trust Region Optimization using a Precision HierarchY) in Chapter 5 which has been

accepted to the International Conference in Computational Science and will appear in Lecture Notes

2 Clancy, R.J. and Becker, S., 2021. Approximate maximum likelihood estimators for linear regression with design
matrix uncertainty. arXiv preprint arXiv:2104.03307.
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in Computer Science3 . The algorithm accepts uncertainty in function and gradient evaluations to

reduce communication, memory, and energy costs while optimizing an objective. The algorithm

solves the problem to the highest accuracy possible before proceeding to the next precision level.

We illustrate the method’s merit on the CUTEst test set and a large-scale data assimilation problem

to estimate wind fields from radar returns.

In the final chapter, we characterize novel sensors used in magnetoencelphalography. This

chapter was published in Physics in Medicine and Biology4 In particular, we formulate the objective

used in the inverse problem to localize regions of brain activity, propose an algorithm to solve it,

and establish system specifications through simulation studies to localize neural currents within a

given tolerance. A central focus of this work was to establish how localization error depends on

accurately specifying a forward model. In other words, how does uncertainty in sensor location and

orientation translate to inverse problem error?

As can be seen from the above collection, this dissertation spans a diverse set of topics, but

all touch on the issue of uncertainty.

3 Clancy, R.J., Menickelly, M., Hückelheim, J., Hovland, P., Nalluri, P., & Gjini, R. (2022). TROPHY: Trust
Region Optimization Using a Precision Hierarchy. arXiv preprint arXiv:2202.08387.

4 Clancy, R.J., Gerginov, V., Alem, O., Becker, S. and Knappe, S., 2021. A study of scalar optically-pumped mag-
netometers for use in magnetoencephalography without shielding. Physics in Medicine & Biology, 66(17), p.175030.



Chapter 2

Robust Least Squares

2.1 Introduction

The primary goal of this paper is to recover unknown parameters from a noisy observation

and an uncertain linear operator. In particular, our mathematical model for robust least squares

is

min
x

{
max
∆∈U

∥(A+∆)x− b∥2
}

(2.1)

which we refer to as our robust optimization (RO) problem. The Euclidean norm is denoted by

∥ · ∥ and U is the uncertainty set from which perturbations in A are drawn.

The above RO formulation is motivated by two situations. In both cases, we let Ā and x̄

represent the true and unknown data matrix and parameter vector, respectively. We model b =

Āx̄+η, with η i.i.d. Gaussian, and we only have knowledge of A = Ā−∆. We don’t know ∆ explicitly

but can make inferences based on the problem. In the first situation, we consider a data matrix

subject to quantization or round-off error. Suppose the observed matrix A has elements rounded

to the hundredth place. Our uncertainty set can be written as U = {∆ ∈ Rm×n : ∥∆∥∞ ≤ δ} with

δ = 0.005. If Ai,j = 0.540, then we know the true Āi,j ∈ (0.535, 0.545], hence ∆i,j ∈ (−0.005, 0.005].

The norm ∥ · ∥∞ takes the maximum absolute value of any element in the matrix.

The second problem considers a data matrix with uncertainty proportional to the magnitude

of each entry, i.e. U = {∆ ∈ Rm×n : ∆i,j ∈ (−p|Ai,j |, p|Ai,j |]}. Here, p denotes a proportionality

constant. Data subject to ±1% uncertainty would have p = 0.01. The two cases cover the effects
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of finite-precision in fixed and floating point representations, respectively. In both problems, the

uncertainty sets are specified element-wise allowing us to decouple along rows.

Due to limitations in both ordinary (OLS) and total least squares (TLS), the signal pro-

cessing community has sought alternatives when operator uncertainty is present. In [Wiesel et al.,

2008] and [Zhu et al., 2014], the authors derive maximum likelihood estimators (MLE) and Cramér

Rao bounds for problems with data matrices subject to Gaussian noise under two different models;

errors-in-variables and a random variable model. The setup for [Zhu et al., 2014] only has access to

sign measurements which is more restrictive than we consider here. Both papers focus primarily on

the case where variance in A and b are known; in contrast, we make no distributional assumption

on A (it could be stochastic, deterministic, or adversarial). In the absence of knowing the variance,

[Wiesel et al., 2008] shows their estimator reduces to the OLS solution. The problem is treated

through an approximate message passing framework in [Zhu et al., 2020] for more general, struc-

tured perturbations. Our use case fits under this umbrella but they impose a sparsity inducing

prior. Although our method performs well with sparse solutions, we do not assume it.

Note that the model in Eq. 2.1 differs from other robust least squares problems considered

in [Xu et al., 2010], [Shivaswamy et al., 2006] and classic papers from the late 1990’s [El Ghaoui

and Lebret, 1997] and early 2000’s [Goldfarb and Iyengar, 2003]. Those works usually made special

assumptions like the constraint and objective norms match (e.g. minimize ∥x∥p subject to ∥Ax−

b∥p ≤ v), column-wise separability, or ellipsoidal uncertainty sets. The work in [Shivaswamy et al.,

2006] is similar regarding row-wise separability, but they impose a hard constraint on the 2-norm

of the solution, i.e., ∥x∥ ≤ k for k ∈ R. For an overview of robust optimization, see [Bertsimas

et al., 2011] and [Gorissen et al., 2015] with the latter focusing on implementation.

In this paper, we consider box constraints over entries of the data matrix. Our main contribu-

tion is the formulation of a robust objective to handle quantization error in least squares problems

and the presentation of methods to solve it. Although the proposed method requires selection of

an uncertainty parameter, it is chosen in a natural and theoretically appropriate way based on the

observed extent of quantization. This is in contrast to ridge regression and MLE based methods
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that require involved parameter tuning or a priori knowledge of the probability distributions from

which model uncertainty is drawn. We anticipate our method to be most effective under moderate

to heavy quantization where fidelity loss is greater than 0.1%.

2.1.1 Limitations of Ordinary and Total Least Squares

The ordinary least squares (OLS) problem seeks a vector x to minimize the residual given by

min
x
∥Ax− b∥2. (2.2)

We focus our attention on the over-determined case where m > n and further assume that A is full

rank. It is well known that the closed form solution to (2.2) is given by

x̂OLS = (ATA)−1AT b. (2.3)

A key assumption for OLS is that A is known with certainty and b is subject to additive noise. The

OLS solution (2.3) is the MLE for the model Ax− b = η ∼ N (0, σ2I).

In practice, it is uncommon to know A precisely. Typical causes of uncertainty are sampling

error, measurement error, human error, modeling error, or rounding error. There were attempts

at addressing this model limitation in [Hodge and Moore, 1972] but these relied on small magni-

tude errors to use a truncated series approximation for an inverse. Total least square (TLS) was

developed in response to this lack of symmetry in uncertainty. Rather than isolating noise to the

observed signal or right hand side, the TLS model allows for an uncertain operator and is given

by (A + ∆)x̄ = b + η where A and b are observed with ∆ and η a random matrix and vector,

respectively. We assume that ∆ and η have been scaled to have the same variance; see [Markovsky

and Van Huffel, 2007] for a modern overview of the topic. The TLS solutions, x̂TLS, solves

min
x,∆,η

∥∥[∆, η]
∥∥
F

subject to (A+∆)x = b+ η (2.4)

where [∆, η] ∈ Rm×(n+1), A and b are the observed matrix/signal pair, and ∥ · ∥F is the Frobenius

norm. It was shown in [H. Golub and F. van Loan, 1980] that (2.4) can be solved via a singular
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value decomposition (SVD) with the closed form solution of

x̂TLS = (ATA− σ2
n+1I)

−1AT b (2.5)

where σn+1 ∈ R being the smallest singular value of the augmented matrix [A, b] ∈ Rm×(n+1).

Similar to OLS, the TLS solution yields a MLE for the model of Gaussian noise in A and b. It

should be noted that (ATA − σ2
n+1I) is necessarily worse conditioned than ATA. Since ATA is

positive definite by virtue of A being full rank, all eigenvalues of ATA are shifted closer to zero by

the amount of σ2
n+1. For a small spectral gap between σn and σn+1, the matrix will be close to

singular making solutions extremely sensitive to perturbations in A.

This can be understood intuitively; uncertainty in A permits additional degrees of freedom

allowing the model to “fit” noise. To illustrate, consider the simple linear regression problem. We

have access to several regressor/response pairs (a, b) ∈ R2. Suppose our data is generated from the

model b = a ·0+ δ with δ ∼ Uniform({−1, 1}) (the zero function plus discrete and uniform noise).

We’d like to recover the true slope parameter, x = 0. In this instance, our three samples are given

by (−0.10, 1.00), (0.00, −1.00), and (0.11, 1.00). The OLS solution returns a slope of x̂OLS ≈ 0.45

whereas TLS gives x̂TLS ≈ 297.79. This is shown graphically in Figure 2.1. TLS’s ability to

vary the operator results in extreme sensitivity to data provided. Although our example appears

exceptional, this behavior is typical of TLS. Because of this sensitivity, a number of alternatives

have been studied for uncertain operators as mentioned above. A more traditional approach for

addressing the ill-conditioning encountered in TLS is ridge regression or Tikhonov regularization

which we consider below.

2.1.2 The Trouble with Tikhonov Regularization

Poor conditioning as observed in TLS is often combated with Tikhonov regularization or

ridge regression (RR) whereby solutions with large norms are penalized via an ℓ2 regularization

term. The solution to the ridge regression problem solves

min
x

{
∥Ax− b∥2 + ∥λx∥2

}
(2.6)
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Figure 2.1: Instance of data sampled from a constant function, b̄ = 0 subject to additive noise.
That is, b = b̄ + δ = δ. Solid line indicates ground truth model (b̄ = 0). Dashed line shows OLS
model (b = a · x̂OLS). TLS model is dot-dashed line (b = a · x̂TLS). Since TLS minimizes orthogonal
distance, the model over-fits data.

with λ ≥ 0. The minimizing x has a closed form solution of

x̂RRλ
= (ATA+ λ2I)−1AT b. (2.7)

There is a structural connection between the RR and TLS; their solutions are nearly identical with

TLS subtracting from the diagonal of ATA and RR adding to it. This can be understood from a

Bayesian statistics point of view. Large values of λ correspond to stronger evidence of lower variance

in x (and zero mean). In the case of an uncertain data matrix, we should have less confidence in

low variance.

Golub, Hansen, and O’Leary explored the interplay between TLS and RR in [Golub et al.,

1999]. They considered a generalized version of the regularized total least squares (RRTLS) problem

min
x,∆,η

∥∥[∆, η]
∥∥
F

subject to (A+∆)x = b+ η and ∥x∥ ≤ γ. (2.8)

The second constraint is equivalent to imposing a regularization term on the objective of the TLS

problem. When the inequality constraint is replaced by an equality, the solution to (2.8), x̂RRTLSα
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say, is given by the x that solves

x =
(
ATA+ αI

)−1
AT b with α = µ(1 + γ2)− ∥b−Ax∥2

1 + γ2
(2.9)

and µ the corresponding Lagrange multiplier. Note that for all γ > 0, we have α ≥ −σ2
n+1.

Similarly, α = −σ2
n+1 when γ = ∥x̂TLS∥ and α = 0 when γ = ∥x̂OLS∥. This suggests that

regularized total least squares merely adds a standard regularization term to the poorly conditioned

TLS matrix, ATA− σ2
n+1I.

Given the interplay between TLS, RR, and RRTLS, it is reasonable to solve either TLS or RR

since they are effectively the same problem with different parameters; the additional term becomes

regularizing when α = λ2 > 0. Although TLS is most appropriate for the case of an uncertain

matrix, its “deregularizing” effect inflames issues with conditioning making it an unpopular choice

for solving typical linear inverse problems.

There is also the tricky consideration of choosing an appropriate regularization parameter,

whether in the standard RR form of (2.6) or γ in (2.8). Although there are many approaches for

choosing a parameter such as Morozov’s discrepancy principle (MDP), the unbiased predictive risk

estimator method (UPR), the generalized cross validation method (GCV), or the “elbow” or “L”

method to name a few, parameter selection is based on heuristic arguments or requires unknown

information a priori. A detailed treatment of the above methods and their analysis can be found

in [Vogel, 2002]. Through the remainder of this paper, we drop our discussion of RRTLS, focusing

instead on TLS and RR.

2.1.3 Robust Least Squares

The central focus of robust optimization (RO) is to find a solution that is feasible over all

possible realizations of uncertain variables. In our case, ∆ ∈ U is unknown where U = {M ∈

Rm×n : |M | ≤ D} and D is an element-wise positive matrix chosen in a principled fashion, i.e.,

the degree to which matrix entries are quantized. Our robustified version is written as a minimax

optimization problem in (2.1) with the appropriate U . The inner maximization problem guards
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against over-fitting, effectively regularizing our solution, and reducing sensitivity to perturbations

in A. Note that RO avoids placing a statistical prior on ∆, which can be a strength or weakness

depending on the model.

The outline of the rest of the paper is as follows: in section II we derive a closed form

solution to the inner maximization problem thereby showing its tractability, section III discusses

computational methods for solving problem (2.1), and section IV provides the results to numerical

experiments.

2.2 Closed Form Solution of Inner Objective and Theory

2.2.1 Floating Point Uncertainty

We begin by breaking (2.1) into an inner maximization and outer minimization problem:

min
x

{
max
|∆|≤D

∥(A+∆)x− b∥2
}

︸ ︷︷ ︸
f(x)

(2.10)

which is equivalent to

min
x

f(x) subject to f(x) = max
|∆|≤D

∥∥(A+∆)x− b
∥∥2. (2.11)

Here |∆| ≤ D indicates that the magnitude of elements in ∆ are bound by the corresponding

non-negative components of D. That is, Di,j constrains element ∆i,j of the uncertainty matrix.

The inner maximization problem will recover f(x). Because the function x 7→ ∥(A +∆)x − b∥2 is

convex in x and the supremum over an arbitrary family of convex functions is convex, it follows

that f is convex making minx f(x) an unconstrained convex optimization problem. To evaluate f

and find a subgradient, it remains to find the maximizing ∆ ∈ Rm×n.

Theorem 1. The maximizing function f(x) in (2.10) is given by

f(x) =
∥∥Ax− b

∥∥2 + 2⟨ |Ax− b|, D|x| ⟩+
∥∥D|x| ∥∥2 (2.12)

where |x| and |Ax− b| denote the vectors of component-wise absolute values.
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Proof. Since f(x) = max|∆|≤D

∥∥(A + ∆)x − b
∥∥2 must be maximized over ∆, we can fix x, define

c := Ax− b, then treat it as constant. Exploiting row-wise separability, we write

max
|∆|≤D

∥∆x+ c∥2 =
m∑
i=1

max
|∆T

i |≤DT
i

(∆T
i x+ ci)

2 (2.13)

where ∆T
i and DT

i are the ith row of ∆ and D, respectively, and ci is the ith element of vector c.

We now work row by row. Note that we can switch to absolute values rather than squares when

maximizing for each row. Applying the triangle inequality gives an upper bound

|∆T
i x+ ci| ≤ |ci|+

n∑
j=1

|∆i,j | |xj | (2.14)

≤ |ci|+
n∑

j=1

Di,j |xj | = DT
i |x|+ |ci|.

It is easily verified that the upper bound is achieved when

∆ = D ⊙ sign(x cT ) (2.15)

making it a solution to the inner maximization problem. Here, ⊙ denotes the Hadamard or element-

wise product. Recalling that ci = [Ax− b]i, we simplify to

f(x) =
∥∥Ax− b

∥∥2 + 2⟨ |Ax− b|, D|x| ⟩+
∥∥D|x|∥∥2. (2.16)

Using Theorem 1, the optimization problem in (2.10) can be rewritten as

min
x

f(x) = min
x

{∥∥Ax− b
∥∥2 + 2⟨ |Ax− b|, D|x| ⟩+

∥∥D|x|∥∥2}. (2.17)

In general, f is not differentiable
(
e.g., let m = n = 1 and A = D = b = 1, then f(x) =

(x− 1)2+2|x| · |x− 1|+x2 is not differentiable at x ∈ {0, 1}
)
, but we are guaranteed a subgradient

by virtue of convexity. Furthermore, a generalization of Danskin’s Theorem [Bertsekas, 1971]

provides us with a method to find elements of the subgradient for all x. In particular,

f ′(x) := 2(A+∆x)
T
[
(A+∆x)x− b

]
∈ ∂f(x) (2.18)

where ∆x indicates the optimal ∆ for a given x as provided in Eq. (2.15).
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2.2.2 Fixed Point Uncertainty

Fixed point uncertainty is a special case of (2.10) with all elements bound by the same value.

We can write this constraint as ∥∆∥∞ ≤ δ with ∥∆∥∞ representing the largest magnitude element

of ∆. Problem (2.10) becomes

min
x

{
max

∥∆∥∞≤δ
∥(A+∆)x− b∥2

}
(2.19)

with a solution denoted by x̂RO. We focus on fixed point error for the remainder of the paper. This

instance gives rise to the following corollary.

Corollary 1. For fixed point uncertainty, problem (2.19) reduces to

min
x

{
∥Ax− b∥2 + 2δ∥x∥1∥Ax− b∥1 +mδ2∥x∥21

}
. (2.20)

Proof. We take 1k ∈ Rk to be the vector composed of ones. Note that ∥∆∥∞ ≤ δ is equivalent

to |∆| ≤ D when D = δ 1m1Tn . By Theorem 1, the result follows easily using properties of inner

products.

2.2.3 Explicit Regularization of Robust Objective

The robust formulation presented above is intended to address uncertainty in the data matrix

from rounding error. Although implicit regularization occurs via the 3rd term in both (2.17)

and (2.20), we don’t address poor conditioning of A directly. To illustrate this point, note that

x̂RO → x̂OLS as δ → 0. If A is poorly conditioned, such behavior is undesirable. This can be

remedied by adding an ℓ2 regularization term and solving

min
x

{(
∥Ax− b∥2 + 2δ∥x∥1∥Ax− b∥1 +mδ2∥x∥21

)
+ λ2∥x∥2

}
. (2.21)

Since the robust objective and regularization term are both convex, so is their sum. Furthermore,

the modified objective is 2λ2 strongly convex yielding a unique minimizer, x̂RROλ
. Strong convexity

also implies a bounded sequence of iterates, i.e., ∥xk − x∗∥ ≤M , and therefore guarantees conver-

gence under the mirror-descent method. In fact, the same technique works with regularizers other

than ℓ2, and can be solved via proximal mirror-descent methods when the regularizer is smooth or

has an easy-to-compute proximity operator [Beck, 2017, Ch. 9].
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2.3 Algorithms

Equipped with an element of the subdifferential, we can employ a variety of solvers. Bundle

methods are a promising choice as they sequentially form an approximation to the objective. This

is done by using the location, function value, and subgradient of previous iterates to lower bound

the objective with supporting hyperplanes. At each step, a direction finding quadratic program

must be solved, but can be dealt with rapidly thanks to software such as CVXGEN [Mattingley

and Boyd, 2012] and ECOS [Domahidi et al., 2013]. A survey on the topic can be found in [Mäkelä,

2002].

Since the problem is unconstrained, another option is to use smooth optimization techniques,

and in particular quasi-Newton methods that form low-rank approximations of ∇2f . Our objective

f is not differentiable, much less twice so, and consequently methods requiring second derivatives

seem theoretically inappropriate. However, there is a growing body of literature going back to

Lemaréchal [Lemarechal, 1982] recognizing the empirical success of these methods. See [Lewis and

Overton, 2013, Guo and Lewis, 2018] and references therein. The success of these methods depends

on the smoothness near the solution. Using the minFunc MATLAB package [Schmidt, 2005] with

random and zero vector initializations, and using the package’s default solver of limited-memory

BFGS [Nocedal, 1980], we observed fast and accurate convergence for several test problems. We

used this method for the numerical experiments presented in the next section.

Subgradient descent is an appealing option due to its simplicity and flexibility. The method

can easily handle constraints via projections or a regularization term h(x) with proximal operators.

Recent advances in proximal subgradient descent methods and their analysis can be found in [Cruz,

2017] and [Millán and Machado, 2019]. Convergence may be slow, but is less of a concern with

heavy quantization. The 3rd terms in (2.17) and (2.20) effectively regularize the objective when δ

and ∥D∥ are large yielding faster convergence. A drawback of the subgradient descent method is

that a step-size scheme must be chosen in advance. One popular choice is the diminishing, non-

summable step length given by tk = 1√
k+1·∥f ′(xk)∥

. A discussion on the choice of step lengths can
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be found in [Boyd et al., 2003]. Stopping criteria are also difficult to specify since it is not a true

descent method (the objective is not guaranteed to decrease on every iteration). The algorithm

therefore typically runs for a fixed number of iterations.

2.4 Numerical Experiments

Setup: We use MATLAB’s pseudo-random number generator randn to draw 10,000 stan-

dard normal matrices, Ā ∈ R30×15. The bar notation in this section indicates true and unobserved

values. We fixed the condition number of our matrices at 100. We did so by performing a singular

value decomposition (SVD) such that Ā = UΣV T where U , V are unitary and Σ is diagonal, then

replaced the diagonal of Σ by linearly decaying values from 1→ 1
100 . This ensures our test matrices

show sensitivity to noisy measurements prior to quantization.

We conducted two experiments. In the first, we draw random vectors from a heavy-tailed

Cauchy distribution with median 0 and scale parameter 1. In the second, the true solution x̄ has

its first element drawn from x̄1 = ±100 with a sign drawn uniformly at random and the remaining

elements drawn from a standard normal distribution, x̄2:15 ∼ N (0, I). This setup exposes the bias

of RR solutions. We remark that we do this for illustrative purposes; if one suspected a signal of

having such a large element, it would of course make sense to run an outlier detection method first.

We obtain our “true” right hand side by taking the image of x̄ under Ā, that is, b̄ := Āx̄,

then generate our observed measurement vector by letting b := b̄ + η where η ∼ N
(
0, ∥b̄∥2

m·SNRI
)

with the desired signal-to-noise ratio (SNR) fixed at SNR = 50. Finally, we quantize Ā which

yields our observed A, then solve problems for OLS (2.2), TLS (2.4), RRλ (2.6), RO (2.19), and

RROλ (2.21). The λ for RRλ and RROλ are chosen according to the GCV and MDP criteria

discussed in Section 2.1.2, and the δ for RO and RROλ is based on the observed accuracy, e.g., if Ā

is rounded to the 2nd decimal, then δ = 0.5 · 10−2. We use the minfunc implementation of limited-

memory MFGS to solve the robust problems with a random initialization. The GCV parameters

is recovered using an approximate line search for the corresponding objectives provided in Vogel’s

text [Vogel, 2002]. We omit UPR because of its similarity to the GCV parameter.
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The MDP parameter is found using the bisection method to solve ∥A x̂RRλ
− b∥2 − ρ = 0 for

λ, where x̂RRλ
is the solution to (2.6) and the parameter ρ ideally reflects the residual’s noise floor.

We chose this method since it is computationally cheap and easy to program, though it is also

possible to solve a constrained least-squares problem directly using standard software like cvxopt

[Dahl and Vandenberghe, 2010]. The goal is to find λ such that ∥Ax̂RRλ
− b∥2 equals the expected

uncertainty introduced by noise. For Āx̄− b = η ∼ N (0, σ2I) which is an m component Gaussian

random variable,

1

σ2
∥η∥2 =

m∑
i=1

(ηi
σ

)2
∼ χ2(m) (2.22)

since ηi
σ ∼ N (0, 1) and

(ηi
σ

)2 ∼ χ2(1). When m = 30, as in our case, both the mean and median

are approximately 30 (exact for mean). To ensure feasibility, i.e., a real root, we choose ρ such that

P
(
∥Āx̄− b∥2 − ρ ≤ 0

)
= 95%, which can be easily calculated using χ2 inverse CDF tables. For

our experiments, ρ ≈ 2∥b̄∥2
3·SNR . An appropriate ρ is generally unknown a priori unless one knows the

noise variance.

Numerical Results: Results for the Cauchy distributed measurement vector are displayed in

Figure 2.2, which shows mean error as a function of rounding digit for Ā, and Figure 2.3, which

illustrates an empirical probability density function (pdf) of component-wise errors for different

methods using a standard Gaussian kernel. In this case, A is quantized to the hundredth spot.

Note that the robust solution does well at reducing error in the face of heavy quantization. This is

evidenced by low mean error through the thousandth spot and small variance as seen in the pdf.

The RO solution converges to the OLS solution as expected when δ → 0, i.e., when the

quantization effect is small. This might be undesirable, especially when A is ill-conditioned, and

can be addressed via the inclusion of a regularization term. The mean relative error performance

for the regularized robust problem given by (2.21) is shown in Figure 2.4. Since the proposed

method does not improve estimation universally, we recommend its use when quantization results

in precision loss of greater than 0.1%. We reiterate that when quantization effects are heavy, there
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Figure 2.2: Mean relative error ∥e∥ = ∥x̂− x̄∥/∥x̄∥ over 10k simulations as a function of the digit
to which matrix entries were rounded to. Note that δ = 0.5× 10−Round to digit.

is a notable benefit of the proposed method and the parameter δ can be chosen in a natural way.

A second observation is that RO doesn’t sacrifice accuracy for bias as RR does. This phe-

nomenon can be observed in Figure 2.5 which depicts empirical pdf’s of component-wise error for

different methods. The plots to the right show error behavior for small components of the solution,

that is, for x̄2:15 ∼ N (0, I). Since values are close to zero, RR is expected to perform well at

estimating the true solution. Indeed, RR implicitly assumes a prior with mean zero. The densities

on the left show errors for “large” components drawn from {±100} (and the sign of the error is

adjusted by the sign of the large component, so a negative error indicates that the estimate is

biased toward zero, and a positive error indicates bias to ±∞). Rather than localizing about zero,

the absolute error’s mode is observed around -7 for GCV and UPR and -25 for MDP. Heavier

penalty terms (bigger λ) place less weight on the LS term in the objective and bias estimates more

aggressively towards zero. Typical λ values for GCV, UPR, and MDP are 0.041, 0.042, and 0.17,

respectively. The robust solution accurately estimates the large and small components values with-

out the extreme errors observed with OLS and TLS; that is, RO appears to have a low-variance,

in-line with RR, but also low-bias, comparable or better than OLS.
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Figure 2.3: Empirical probability density function of component-wise error over 10k simulation
when x̄ is drawn from a Cauchy distribution and Ā is quantized to the hundredth spot (round to
digit = 2 and δ = 0.5× 10−2 ).
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for large quantization then converges to corresponding RR solution.
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Figure 2.5: Empirical probability densities of component-wise errors for the single large element
experiment when Ā is quantized to the hundredth. Left: Pdf of the error (adjusted by the sign of
the large element x̄1) of different methods for the large element (x̄1 = ±100). Note that RR and
GCV have have modes away from zero indicating bias. Right: Pdf of the error for the 2nd–15th

components (which are drawn from N (0, 1)).

2.5 Conclusion

In this paper, we presented a robust method for addressing fixed and floating point uncer-

tainty due to quantization error. After reviewing the limitations of existing methods, we formulated

a tractable robust objective and presented algorithms to solve it. The only parameter necessary

in our formulation is chosen in a principled fashion, i.e., by observing the degree to which matrix

elements are rounded. Our numerical experiments show that robust least squares outperforms OLS,

TLS, and RR, effectively balancing bias and accuracy.

Acknowledgments: We would like to thank Marek Petrik for his keen eye and helping us

spot an elegant simplification to our approach.



Chapter 3

Approximate Maximum Likelihood Estimators for Regression with Data

Uncertainty

3.1 Introduction

We consider the linear regression problem subject to uncertainty in the operator or data/design

matrix given by the generative model

y = Gx+ η, (3.1)

where G ∈ Rm×n and η ∈ Rm are random variables with independent components, and x ∈ Rn

is a fixed but unknown parameter vector. Typical causes of operator uncertainty are sampling

error, measurement error, human error, modeling error, or rounding error. Our focus is on the

over-determined case when m > n. We assume distributional knowledge of both G and η. Our

goal is to recover an estimate for x given observations of y using a maximum likelihood estimation

(MLE) framework.

We have several motivating examples in mind. The first involves quantization error where

design matrix elements are rounded to a fixed decimal place. Such instances naturally arise during

digitization and can be modeled as Berkson error. Another typical case is for surveys or ratings

where respondents answer questions on a Likert scale to estimate a response variable, e.g., suitability

of an applicant for a particular job. A continuum of preferences are forced to take integer values.

Furthermore, survey responses are subjective in nature introducing more uncertainty.

A second example involves effectively estimating x when the design matrix is subject to
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floating point error. This might be encountered when data is roughly transcribed or the number

of significant figures (digits in the mantissa) stored on a drive are limited for memory savings.

Floating point error is a generalization of rounding error.

The third example is for clipping, i.e., we observe H = sign(G) ·max(G, γ) where max(·, γ)

operates element-wise and γ is a clipping threshold. If G is drawn from a double exponential, then

the uncertainty in elements of H taking extreme values of ±γ will be distributed exponentially (up

to a sign). Given the heavy tails of exponentials, it is desirable to incorporate operator uncertainty

in the problem formulation.

Our decision to focus on MLEs is supported by the fact that well known regression formu-

lations are in actuality MLEs for additive noise, that is, for y = Ax + η where η is random but

A is known. In particular, argminx∥Ax− y∥22 (ordinary least squares), argminx∥Ax− y∥1 (least

deviation regression), and argminx∥Ax − y∥∞ (minimax regression) correspond to the MLEs for

Gaussian, double exponential, and uniform noise, respectively.

These MLE regression problems rely on knowledge of the vector y’s joint probability density

function (PDF). Note that each component of y in (3.1) is the sum of scaled random variables, i.e.,

yi = gT
i x+ηi =

∑n
i=1Gijxj +ηi where g

T
i is the ith row of G and subscripts denote the component

of the corresponding vector. Despite the innocuous form, sums of random variables are difficult to

work with: individual PDFs must be convolved to obtain a PDF for their sum.

One option is to ignore uncertainty in G altogether, focusing on additive noise in y alone as

done in ordinary least squares (OLS). Although reasonable when uncertainty in the design matrix is

small, this simplification often fails in practice. Total least squares (TLS) was developed to resolve

the asymmetry in uncertainty between the design matrix and the measurement vector. It is often

used with the errors-in-variables model (EIV). TLS solves the problem

min
x,η,∆

∥∥[∆, η]
∥∥
F

subject to (A+∆)x = y + η (3.2)

where [∆,η] ∈ Rm×(n+1) is minimized with respect to the Frobenius norm. The model supposes

that for an observed A, there is true deterministic ATRUE = A + ∆∗ where ∆∗ solves problem
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(3.2). Golub and Van Loan showed that TLS can be solved via a singular value decomposition with

a closed form solution x̂TLS = (ATA− σ2
n+1I)

−1ATy [H. Golub and F. van Loan, 1980] with σn+1

being the smallest singular value of [A,y]. The TLS solution coincides with the MLE for a deter-

ministic ATRUE with independent, identically, distributed additive Gaussian noise [Van Huffel and

Vandewalle, 1991, Fuller, 1987]. An analytic solution is appealing but it suffers from a deterioration

in conditioning.

As an alternative to TLS, Wiesel, Eldar, and Yeredor [Wiesel et al., 2008] devised a MLE

when the design matrix is a random variable with all uncertainty normally distributed. We use the

same generative model in our setup, but allow for noise from general distributions. By exploiting

properties of Gaussian distributions, they formed a likelihood function (LF), showed its equiva-

lence to a (de)regularized least squares problem, and provided algorithms to find the estimator.

Gaussiantity is central to their analysis, simplifying otherwise intractable calculations.

Efforts have been made to move away from Gaussian noise through robust optimization

where the goal is to generate estimates impervious to perturbations in the observed data. Many

robust optimization problems are cast in a minimax form [Xu et al., 2010, Goldfarb and Iyen-

gar, 2003, El Ghaoui and Lebret, 1997, Bertsimas et al., 2011, Becker and Clancy, 2020]. Typ-

ically, an uncertainty set U and objective function f are specified, then the aim is to solve

minx {maxU∈U f(x, U)}. There are a number of drawbacks to the robust framework; in partic-

ular, estimates tend to be overly conservative. Furthermore, these methods discard distributional

knowledge of the noise focusing instead on set geometry.

To make progress on the MLE in general, we require a method to efficiently construct a

probability density. Although this is a difficult task for all but a few special distributions, there

is hope. Given certain regularity conditions, work in the Laplace domain is possible through

a bilateral transformation. Rather than working with PDFs directly, we can use their moment

generating functions (MGF). The ideas in this paper rely on two important properties of MGFs:

(1) the MGF for a sum of independent random variables is the product of their individual



23

MGFs, i.e., MX+Y (t) = MX(t)MY (t) and

(2) the MGF uniquely characterizes a random variable as its PDF does.

Not all random variables permit an MGF (e.g., the Cauchy distribution lacks one) but many dis-

tributions of practical interest do, including Bernoulli, binomial, Poisson, uniform, Gaussian, expo-

nential distributions, as well as all distributions with bounded support. It is assumed throughout

this paper that all random variables discussed have MGFs.

Using moment generating functions, we can easily specify the distribution for linear combi-

nations of random variables found in the regression problem. Recovery of a PDF for use in a LF is

possible, in theory, through inversion of the MGF but is often difficult in practice. Instead, by using

the MGF, we can employ the saddle point method to estimate the PDF and form an approximate

LF. We then maximize the approximate LF to recover an estimate of x in Eq. 3.1 accounting for

uncertainty in matrix G.

The saddle point method is a generalization of Laplace’s method and was first used by Debye

to study Bessel functions of high order [Debye, 1909] then by Watson for statistical mechanics

[Watson, 1995]. It was extended by Daniels in his seminal paper [Daniels, 1954] to estimate the

PDF of sample means. Barndorff-Nielsen and Cox [Barndorff-Nielsen and Cox, 1979] and Luggan-

nani and Rice [Lugannani and Rice, 1980] generalized his work for independent sums of random

variables. Spady [Spady, 1991] discussed saddle point approximations for linear regression problems

when additive noise is independent but not identically distributed and focused on the distribution

of user specified estimating equations such as ∇x∥Gx − y∥2 or the subdifferential of ∥Gx − y∥1.

Stawdermann, Casella, and Wells [Strawderman et al., 1996] used the saddle point method to ap-

proximate distributions of MLEs in the regression problem, but focused on its statistical properties

rather than point estimation. A number of other works use Laplace’s approximation for parameter

estimation in general linear models but most applications are concerned with longitudinal scientific

studies and assume Gaussianity throughout [Vonesh, 1996, Ko and Davidian, 2000, Battauz, 2011].

In this paper, we employ the ideas established in [Strawderman et al., 1996] and derive an
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approximate likelihood function for point estimation in linear regression problems with uncertainty

in both the measurement vector and design matrix. The approximate MLE is based on easily

computed univariate MGFs and can accommodate noise from general distributions. We cast the

problem as a constrained mathematical program and provide an expression for the corresponding

gradient allowing for use of “off-the-shelf” first-order solvers and discuss algorithmic considerations.

Although the saddle point method for approximating densities (and maximum likelihood estima-

tion) is known in statistical literature, its use for parameter estimation in the signal processing

community is limited; a central goal of this work is to bridge the gap.

In Section 3.2, we provide the mathematical background for the proposed method. We

formulate and present our approximate (log) likelihood function and its gradient in Section 3.3

then introduce algorithms to solve the approximate MLE problem in Section 3.4. We motivate its

utility through illustrative examples in Section 3.5 then present results of numerical experiments

in Section 3.6.

3.2 Background

Maximum likelihood estimation is one of the most commonly used techniques in statistics.

MLEs require the construction of a LF which varies in difficulty. In the regression problem, we

are concerned with sums of random variables and their corresponding densities. Although there

are several well known distributions for sums of random variables, such as sums of normals, χ2’s,

exponentials, etc., the majority of distributions do not enjoy elegant forms. Furthermore, many

densities for sums require them to be identical, severely curtailing their usefulness; linear combi-

nations are out of reach. Density construction is possible through convolution but presents serious

difficulties in practice.

Rather than manipulating densities directly, we can work with their moment generating

functions (MGF). The idea is closely related to Fourier analysis where a convolution in time becomes

multiplication in the frequency domain. The MGF is simply a bilateral Laplace transform of the
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PDF, fX , given by

MX(t) = E
(
etX
)
=

∫ ∞

−∞
etxfX(x) dx. (3.3)

The existence of an MGF is not guaranteed, but when it does exist, it uniquely characterizes the

random variable. We exploit this idea by encoding the random variable’s statistics in the moment

generating function, then use it to construct an approximate LF.

To illustrate, let U ∼ Uniform(0, 1) and Z ∼ N (0, 1) with known densities of fU (u) = I(0,1)(u)

and fZ(z) = (1/
√
2π) exp {−z2/2}, respectively (we use IA to denote indicator function over A).

The density of U + V is

fU+Z(y) =
1√
2π

∫ 1

0
e−

(y−s)2

2 ds

which has no analytic form. In contrast, the MGFs are MU (t) = (exp {t} − 1)/t and MZ(t) =

exp {−t2/2}. The MGF of their sum is

MU+Z(t) =
(et − 1)e−t2/2

t
.

The MGF appears more complicated but is exact. In contrast, the PDF requires evaluation of

an integral at each point and relies on approximation through numerical integration. Use of the

PDF presents no real difficulty in our example, but as the number of random variables in the sum

increase or distributions vary, construction and/or evaluation of the PDF, as well as finding the

gradient of its associated likelihood, becomes problematic.

Using the generative model, we aim to form a likelihood function, L, based on observations

of y. We assume that both G and η are component-wise independent and that their distributions

are known. We cannot observe G or η directly, but instead observe y which is a function of both.

For notational simplicity, let G ∼ PG and η ∼ Pη with P denoting the respective distributions.

The likelihood will be a function of x and depend on PG,Pη, and y given as

L(x) = p(y; x,PG,Pη). (3.4)

We require a closed form expression for p, the PDF of y = Gx + η, which is a component-wise

weighted sum of random variables. As discussed earlier, it is difficult to compute in general.
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Given the trouble of forming an exact PDF, we focus on approximation methods. One option

is to randomly sample the distribution then form a kernel approximation [Rosenblatt, 1956, Parzen,

1962]. Unfortunately, kernel density estimation requires many samples to adequately capture the

structure of the distribution and its accuracy is influenced by the user’s choice of a kernel, making

in unsuitable for our regression problem. Another popular choice is to use an Edgeworth series

expansion [Hall, 2013] where a polynomial approximation for the density is used that matches the

first several cumulants of the true density. A major drawback of the method is that it introduces

false critical points unrelated to the actual density. Since the ultimate objective is to maximize the

LF, the addition of phantom critical points creates otherwise avoidable difficulties. Furthermore,

the Edgeworth expansion can take negative values which violates the properties of a PDF. At this

point, we turn our attention to the saddle point method to approximate our PDF based on the

exact MGF.

0

Figure 3.1: Example of the true density for y and several approximations when y = gTx+ η with
g uniform, x from a Cauchy distribution, and η normal. Note that x is drawn randomly to start
but fixed for pdf of y. The saddle point approximation fits distributional tails exceptionally well.
Note that Edgeworth expansion takes negative values and introduces phantom critical points. The
best Gaussian has a matching mean and variance as the true distribution.
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3.2.1 Saddle point approximation

We outline the principle behind the saddle point method here with an informal treatment.

The method is closely related to the method of steepest descent and the stationary-phase method.

For rigorous arguments, the interested reader may refer to the original paper [Daniels, 1954] or one

of the excellent overview articles [Reid, 1988, Goutis and Casella, 1999, Huzurbazar, 1999]. Our

aim is to give a general idea of the method for illustrative purposes.

We start with a well known theorem in probability stating that for a random variable A, if

the MGF MA(iw) is integrable (with i =
√
−1), then it has a PDF given by

fA(α) =
1

2π

∫ ∞

−∞
MA(iw) e

−iwα dw.

This is the inverse Fourier transform of the MGF with a complex argument. By a change of variable,

t = iw, the integral becomes

fA(α) =
1

2πi

∫ i∞

−i∞
MA(t) e

−tα dt

=
1

2πi

∫ i∞

−i∞
elnMA(t)−tα dt.

For notational simplicity, the cumulant generating function (CGF) is defined as KA(α) = lnMA(α).

Assuming reasonable regularity conditions and by the Closed Curve Theorem, we can rewrite an

equivalent integral with our contour translated by τ ∈ R (to be fixed shortly) along the real axis

such that

fA(α) =
1

2πi

∫ τ+i∞

τ−i∞
eKA(t)−tα dt.

To approximate the integral, the exponent is Taylor expanded about its maximum value on the

contour. This agrees with intuition; the approximation will be accurate where the integral’s mass

lies. Points where the expansion is less accurate are effectively down-weighted through exponenti-

ation. The quality of the approximation is contingent on the nature of KA(t)− tα, but is favorable

for sums of random variables.

The integrand takes its maximum value along the contour at a critical point, that is, when

K ′
A(t) − α = 0. It so happens that when α is in the support of the PDF for A, there is a unique
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real root for the preceding equation [Daniels, 1954]. We call this point t0 ∈ R. Since the maximum

occurs on a contour parallel to the imaginary axis, a minima occurs at the same point along the

real axis because the exponent is analytic and must fulfill the Cauchy-Riemann equations, hence

K ′′
A(t0) > 0. Taylor expanding about t0 and shifting the contour to pass through it, i.e., τ = t0,

gives,

fA(α) ≈
1

2πi

∫ t0+i∞

t0−i∞
exp

{
(KA(t0)− t0α)

+ (K ′
A(t0)− α)(t− t0) +

1

2
K ′′

A(t0)(t− t0)
2

}
dt

=
1

2πi
eKA(t0)−t0α

∫ t0+i∞

t0−i∞
e

1
2
K′′

A(t0)(t−t0)2 dt

Through successive substitutions, the integrand can be rewritten as a Gaussian function and inte-

grated over R yielding an approximation of the PDF for A,

fA(α) ≈ f̃A(α) =

√
1

2πK ′′
A(t0)

eKA(t0)−t0α (3.5)

where t0 depends on α through the equation K ′
A(t0)− α = 0. The function f̃A(α) is known as the

saddle point approximation for fA at point α. Higher order approximations can be achieved by

including more terms in the Taylor expansion, but we limit our discussion to quadratics.

3.2.2 Notation

Bold lower/upper case letters denote vectors/matrices, while unbolded lower-case letters are

scalars. For a matrix G, the ith row and jth column are given by gT
i and gj , respectively. A

vector y is composed of components yi with the subscript denoting the index of an element. We

write the joint CGF of a random variable y ∈ Rm as Ky(t) = [Ky1(t1), ..., Kym(tm)]T and its

derivatives K
(p)
y (t) = [ ∂

p

∂tp1
Ky1(t1), ...,

∂p

∂tpm
Kym(tm)]T . Unless otherwise noted, the variables t and

ti are reserved to denote solutions to equation K ′
Gx+η(t)−y = 0 where ti is the solution to the ith

component of the vector equation.

A scalar function f : R → R applied to a matrix A acts component-wise, i.e., [f(A)]ij =

f(Aij). The Hadamard (or element-wise) product/quotient is denoted by ⊙/⊘. For a vector
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y ∈ Rm, the matrix diag(y) ∈ Rm×m has the components of y along its diagonal and zeros

elsewhere. A vector of ones and zeros is denoted by 1 and 0, respectively.

3.3 Likelihood function

With an approximate density in hand, we can use (3.4) and (3.5) to form a likelihood function

(LF). Begin by noting that the joint density for a random vector with independent components can

be rewritten as a product,

p(y; x,PG,Pη) =
m∏
i=1

fYi (yi; x,PG,Pη)

=

m∏
i=1

fgT
i x+ηi

(yi), (3.6)

where fYi is the PDF for the ith component. Since PDF construction is difficult for sums of random

variables, we use the saddle point approximation and the LF from (3.4) such that

L(x) = p(y; x,PG,Pη) ≈
m∏
i=1

f̃gT
i x+ηi

(yi). (3.7)

We now define our approximate-likelihood function (or approximate-LF) as

L(x) = exp

{
m∑
i=1

KgT
i x+ηi

(ti)− tiyi

}

·

[
m∏
i=1

(
2πK ′′

gT
i x+ηi

(ti)
)−1/2

]
(3.8)

which assumes known measurements for yi and distributional knowledge of G and η. Recall that

ti solves K
′
gT
i x+ηi

(ti) = yi.

As with any MLE problem, our goal is to find x that maximizes the LF. For numerical

stability, we focus on the log-likelihood function (log-LF), i.e., ℓ(x) = lnL(x), which has the same

maximizer as (3.8) (we also omit the constant 2π since it doesn’t impact the location of optima)

and is given by

ℓ(x) =

m∑
i=1

[
KgT

i x+ηi
(ti)−

1

2
ln
(
K ′′

gT
i x+ηi

(ti)
)
− tiyi

]
. (3.9)
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By exploiting the independence of components for both G and η and using properties of

MGFs, we can write KgT
i x+ηi

(ti) = Kηi(ti) +
∑n

j=1KGij (xjti). Since both ηi and Gij have known

CGFs, explicit calculation of ℓ(x) is easy and the log-LF is given by

ℓ(x) =

m∑
i=1

Kηi(ti) +

 n∑
j=1

KGij (tixj)


− tiyi −

1

2
ln

K ′′
ηi(ti) +

n∑
j=1

K ′′
Gij

(tixj)

  . (3.10)

We remind the reader that each ti is a function of yi and x through the critical point equation

although we leave the dependence out for notational simplicity. If functional forms of KGx+η(t)

and its derivatives are known, it is easier to work with the vectorized version, written as

ℓ(x) = 1T
(
KGx+η(t)−

1

2
ln
(
K ′′

Gx+η(t)
))
− tTy. (3.11)

Functional forms for a particular problem are typically found by working directly with component-

wise elements (Equation 3.10) first.

Under the framework presented here, the observed matrix G goes unused since all pertinent

statistical information is embodied in the CGF. In practice, we envision the observed G as the

sample mean with noise distributed about it, as will be illustrated in Section 3.5. If distributional

parameters are unknown, such as variance for a Gaussian, we could treat them as variables in our

log-LF. The actual formulation and gradient calculations would change only slightly, although the

problem may have more spurious stationary points.

3.3.1 Log-likelihood gradient

Although we have a log-LF, we must still maximize it. Most optimization algorithms rely on

gradients so we focus on that computation now. To complicate matters, our log-LF depends on t

which is coupled to x and, in general, has no closed form solution. To deal with this, we proceed

with implicit differentiation as is done in the adjoint state method by treating t as an independent
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variable. We recast our MLE problem as a mathematical program

argmax
x,t

ℓ(x, t)

subject to K ′
Gx+η(t)− y = 0. (3.12)

It follows from the chain rule that

∇xℓ =
∂ℓ

∂x
+

(
∂ℓ

∂t

)(
dt

dx

)
. (3.13)

We follow the convention for Jacobians that the column indicates which variable is being differenti-

ated and the row represents the component, i.e., (dt/dx)ij = ∂ti/∂xj . By treating x or t as fixed, it

is straightforward to calculate the partial derivatives of ℓ(x, t). It remains to find (dt/dx) ∈ Rm×n.

To ease notation, let q(x, t) = K ′
Gx+η(t)−y. Differentiating the constraint q(x, t) = 0 gives

∂q

∂x
+

(
∂q

∂t

)(
dt

dx

)
= 0 ⇐⇒ ∂t

∂x
= −

(
∂q

∂t

)−1(∂q

∂x

)
. (3.14)

Combining (3.13) and (3.14) yields an expression for the gradient

∇xℓ =
∂ℓ

∂x
−
(
∂ℓ

∂t

)(
∂q

∂t

)−1(∂q

∂x

)
. (3.15)

Rewriting in terms of CGFs and their derivatives, we have

∂ℓ

∂x
= 1T

(
∂

∂x
KGx+η(t)−

1

2

{
diag

(
K ′′

Gx+η(t)
)}−1 ∂

∂x
K ′′

Gx+η(t)

)
, (3.16)

∂ℓ

∂t
=

(
K ′

Gx+η(t)−
1

2

(
K ′′′

Gx+η(t)⊘K ′′
Gx+η(t)

)
− y

)T

, (3.17)

∂q

∂t
= diag

(
K ′′

Gx+η(t)
)
, (3.18)

∂q

∂x
=

∂

∂x
K ′

Gx+η(t), (3.19)

where t must be found for a given x by solving q(x, t) = 0. With enough patience, these derivatives

can generally be calculated by hand. We present gradients for the example problems in Section 3.5

in the appendix.
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3.4 Algorithms

So far, we proposed a method for constructing an approximate log-LF using noise from general

distributions and discussed methods for calculating its gradient. Success rests on our ability to

efficiently and accurately optimize ℓ as cast generically in (3.12). There are several computational

challenges for maximizing the approximate log-LF.

First, most optimization algorithms require access to the objective’s gradient. Although we

present a method for obtaining a gradient when t must be determined numerically, it can be a

challenging task. For those who prefer not to toil endlessly over a cruel calculus exercise, automatic

differentiation software can be employed. ADiMat is a popular package for MATLAB [Bischof

et al., 2002]. It supports reverse-mode differentiation (known as back-propogation in the context of

training neural nets) which is desirable for scalar objectives of many variables. A list of packages

for different languages can be found at http://www.autodiff.org.

The second challenge follows from the non-concavity of ℓ in x, since most algorithms can

only guarantee convergence to stationary points or, at best, local maximizers, and globalization

strategies are either heuristics or computationally infeasible. This is a challenge for most MLE

problems, not just our formulation. Experimental evidence using multiple initializations suggests

that the non-concavity effect is quite mild, especially when initializing with a reasonable guess. We

found that using the OLS estimator works well as an initial guess, as it is cheap to compute and

more robust than the TLS estimator.

As the problem is unconstrained with a smooth objective function, we use the well-known

quasi-Newton method L-BFGS [Nocedal, 1980] via the MATLAB package minFunc [Schmidt, 2012]

because L-BFGS converges more quickly than gradient descent yet doesn’t require the second-order

derivative information nor matrix inversion of Newton’s method. Since minFunc is a minimization

routine, we minimize −ℓ(x) in practice rather than maximimizing ℓ(x). L-BFGS performs well on

moderate or even large problems. Very large problems could be approached via stochastic gradient

methods, using a subset of data to estimate a gradient, but such implementations are beyond the

http://www.autodiff.org
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scope of this paper.

3.5 Examples

The following examples consider the generative model, y = Gx+η. Although we are free to

use additive noise from other distributions depending on the problem, we elected to use Gaussian

noise for clarity of exposition. In particular, η ∼ N (0, σ2I). The corresponding CGFs and their

derivatives are

Kηi(ti) = σ2t2i /2, K ′
ηi(ti) = σ2ti, K ′′

ηi(ti) = σ2. (3.20)

The log-LF for each example is derived and provided below. All the corresponding derivatives

used for gradient calculations can be found in the appendix. We remind the reader that although

analytic expressions for the gradient are possible, automatic differentiation eliminates the need for

messy calculations.

3.5.1 Rounding error

Suppose that we observe y and a rounded version of G, denoted by H. For concreteness,

assume all elements of G are rounded to the ones spot, e.g., 1.4→ 1. In this case, we can model G

as a uniform random matrix of mean H. Parameter values specifying the support of the uniform

random variables can be inferred from the data. If elements are rounded to the ones spot, then

the uncertainty parameter will be δ = 0.5; if rounded to the tens, it will be δ = 5, etc. Gaussian

additive noise of known variance is assumed for η.

To highlight the difficulties of forming an exact likelihood for this problem, we note that y

is the joint density of linear combinations of uniform and Gaussian random variables. The Irwin-

Hall distribution covers the case of i.i.d. uniform random variables on (0, 1) which has a piece-wise

polynomial PDF. Weighted sums of uniform random variables were studied in [Kamgar-Parsi et al.,

1995] where the authors showed that the density can be written as a sum of polynomials through

extensive use of the Heaviside function. Unfortunately, the number of terms in the expansion grows

exponentially; a LF of 30 variables contains over a billion terms. The PDF for the sum of uniforms
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must still be convolved with a Gaussian density to obtain the true density for a single component of

y. With y ∈ Rm, a single likelihood evaluation requires summing a billion terms m times! Needless

to say, the problem is intractable using an exact likelihood.

The approximate likelihood presents a simple and appealing alternative. As shown in (3.10),

we can focus on element-wise, univariate, random variables to form our approximate log-LF. The

generating functions used to construct the LF can be found in most statistical texts. In particular,

the CGF for Gij ∼ Uniform(Hij − δ,Hij + δ) can be simplified to

KGij (tixj) = tixjHij + ln

(
sinh(δtixj)

δtixj

)
, (3.21)

We also require the corresponding derivatives given by

K ′
Gij

(tixj) = Hijxj −
1

ti
+ δxj coth(δtixj),

K ′′
Gij

(tixj) =
1

t2i
− δ2x2jcsch

2(δtixj). (3.22)

Putting it together gives the log-LF

ℓ(x) =

m∑
i=1

 σ2t2i
2

+

n∑
j=1

[
Hijtixj + ln

(
sinh(δtixj)

δtixj

)]

− tiyi −
1

2
ln

σ2 +

n∑
j=1

(
1

t2i
− δx2

jcsch
2(δtixj)

)  (3.23)

and can be written in matrix/vector form as

ℓ(x) =tT
(
σ2

2
t+Hx− y

)
+ 1T ln

[
sinh

(
δtxT

)
⊘
(
δtxT

)]
1

− 1

2
1T ln

[
σ2 1+ n⊘ t2 − δ2 csch2

(
δtxT

)
x2
]
, (3.24)

where t solves the equation K ′
Gx+η(t) = y.

The above example is principled and can be used in instances of rounding. The observed

design matrix is used directly since it (along with δ) completely specifies the distribution from

which our “true” design matrix was drawn. The distribution of G and all its parameters can be

inferred by observing H.
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3.5.2 Floating point uncertainty

For the case of floating point uncertainty, all appearances of δ should be replaced by Dij

or D depending on whether it appears in an element-wise or matrix/vector equation, respectively.

Specifically, by letting D be a non-negative matrix specifying the uncertainty based on the number

of significant figures included. For example, if Hij = 1.7 × 104 then Dij = 0.05 × 104. Setting

M = D⊙ (txT ), we have

ℓ(x) =tT
(
σ2

2
t+Hx− y

)
+ 1T ln [sinh (M)⊘M] 1

− 1

2
1T ln

[
σ2 1+ n⊘ t2 −

(
D2 ⊙ csch2 (M)

)
x2
]
. (3.25)

The derivatives provided in the appendix are for the floating-point uncertainty which reduces to

fixed-point or rounding error by letting D = δ1m1Tn .

3.5.3 Exponential clipping

Suppose that the the elements of G are drawn from a double exponential distribution with

rate λ and that entries with magnitudes greater than some threshold, γ say, are clipped. The

clipped matrix is given by

H = sign(G) ·min{|G|, γ},

with min{·, γ} and the absolute values operating element-wise. In this case, uncertainty is only

realized for clipped components. Let S = sign(H) and A be defined by

Aij =


1, |Hij | = γ,

0, else.

By the memorylessness property of exponentials, the uncertainty of clipped entries will also be

±Exponential(λ). Using Gaussian additive noise, the remaining CGFs and corresponding deriva-
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tives are given by

KGij (tixj) = tiHijxj −Aij ln

(
1− Sijtixj

λ

)
,

K ′
Gij

(tixj) = Hijxj +
AijSijxj

λ− Sijtixj
, (3.26)

K ′′
Gij

(tixj) =
Aijx

2
j

(λ− Sijtixj)2
.

Using the CGFs above, the approximate log-LF is given by

ℓ(x) =

m∑
i=1

 σ2t2i
2

+

n∑
j=1

[
tiHijxj −Aij ln

(
1− Sijtixj

λ

)]

− tiyi −
1

2
ln

σ2 −
n∑

j=1

Aij x
2
j

(λ− Sijtixj)2

  . (3.27)

Letting Λ = λ1m1Tn ∈ Rm×n and C = S⊙ (txT ) the matrix/vector form is

ℓ(x) = tT
(
σ2t

2
+Hx− y

)
+ 1T (A⊙ ln [Λ⊘ (Λ−C)])1

−1

2
1T ln

{
σ21+

[
A⊘ (Λ−C)2

]
x2
}
. (3.28)

Derivatives for construction of the gradient can be found in the appendix.

It can be observed that the approximate log-LF above and its derivatives have singularities

depending on component values of x. Since root finding algorithms generally require continuity,

complications arise when solving for the t that verifies K ′
Gx+η(t) = y. Consequently, a modified

root-finding algorithm must be employed that brackets a continuous interval about zero.

3.5.4 Gaussian uncertainty

For our final example, both the design matrix and measurement vector are subject to Gaussian

noise. In this case, there exists an exact closed form likelihood that can be derived directly from the

joint density and we show that our method recovers the exact log-LF. Suppose that G is Gaussian

with mean H and element-wise variance ρ2. Using the same additive noise of as the other examples,

the remaining CGF is

KGij (tixj) = hT
i x ti +

1

2
ρ2t2ix

2
j . (3.29)
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Recalling that ti is the solution to K ′
gT
i x+ηi

(ti) = yi, we can solve for ti giving

ti =
yi − hT

i x

σ2 + ρ2∥x∥2
. (3.30)

Plugging (3.29) and (3.30) into (3.10) gives our “approximate” log-LF,

ℓ(x) = −1

2

[
∥y −Hx∥2

σ2 + ρ2∥x∥2
+m ln

(
σ2 + ρ2∥x∥2

)]
. (3.31)

By solving for t as a function of x, the gradient is given directly by

∇xℓ(x) =
−1

σ2 + ρ2∥x∥2

HT (Hx− y) (3.32)

− ρ2
(
∥Hx− y∥2

σ2 + ρ2∥x∥2
−m

)
x

 .

We note that ℓ(x) is the exact log-likelihood, up to a constant, as the one derived in [Wiesel

et al., 2008]. This follows from the fact that a Gaussian is uniquely determined by its first and

second cumulants, i.e., mean and variance. The truncated Taylor series used for the saddle point

approximation is precise by virtue of all higher-derivatives being zero.

3.6 Numerical experiments

To validate the approximate likelihood estimator, we implemented our proposed method

along with OLS and TLS on the model examples discussed in Section 3.5. Although it is possible

to use a weighting matrix for TLS to account for non-uniform variance between the operator and

measurement vector, we observed little benefit and opted to solve the unweighted version. In each

case we used the generative model y = GxTRU + η with η ∼ N
(
0, (0.1)2I

)
. The variance on the

additive Gaussian noise was chosen as to not overwhelm uncertainty in G. The “true” solution

vectors, denoted by xTRU, were drawn from a heavy-tailed Cauchy distribution; this distribution

makes the use of prior information on the solution difficult. Although xTRU is randomly drawn, it

is fixed for each simulation and does not introduce uncertainty into the problem. The vector y is

observed.

For each example, the matrices in question were created as follows:
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Figure 3.2: Median relative error
(
∥xEST−xTRU∥

∥xTRU∥

)
over 1,000 simulations. Number of columns fixed

at n = 20 while row count varied from m = 21 to m = 2, 000 showing estimator performance with
additional data.

• Rounding: The elements of G were drawn from a continuous uniform distribution sup-

ported on (0, 10). The observed matrix H was constructed by rounding G to the ones spot,

i.e., H = Round(G) with uncertainty parameter δ = 0.5.

• Floating point: The elements of G are the product of a standard normal Gaussian and

10k where k is uniformly chosen from {0, 1, 2, 3}. The observed matrixH is given by keeping

two significant figures. The uncertainty for a particular element is scaled correspondingly,

i.e., if Hij = −3.1× 102 then Dij = 0.05× 102.

• Exponential clipping: The elements of G were drawn from a double exponential or

Laplace distribution with rate λ = 2. Fixing the clipping threshold at γ = 2, matrix

H = sign(G)max{|G|, γ} is observed. We note that for λ = γ = 2, approximately 2% of

matrix elements are clipped.

• Gaussian: A mean observed matrix H was drawn randomly from a Gaussian of variance

100 (this merely fixes a mean and contributes no uncertainty to the problem). The elements

of matrix G were then drawn from a Gaussian of mean H and variance ρ2 = 4. The
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Gaussian approximate MLE corresponds to the exact MLE.

For each listed problem, it is assumed that H, y, and the relevant distributional parameters are

known. We conducted three simulations for each example instance:

(1) Fixed the number of columns at n = 20 then allowed the number of rows to increase from

m = 21 to m = 2000 reflecting how the estimator responds to more data.

(2) Fixed the number of rows at m = 100 then allowed the number of columns to increase

from n = 1 to n = 99 evaluating how the estimator responds to an increasing number of

unknowns.

(3) For m = 55 and n = 50, we investigated the distribution of errors the approximate MLE

error compares to that of OLS and TLS.

The approximate MLE, OLS, and TLS estimators are denoted by xAML, xOLS, and xTLS, respec-

tively. A generic estimator is denoted by xEST.

The first two simulations summarized in Figs. 3.2 and 3.3 show that AML outperforms

the other methods when the system is only slightly over determined. The method also excels in

the highly over-determined regime for exponential clipping and floating point uncertainty. The

relatively small extent of operator uncertainty as is typically encountered in the case of rounding

error might explain why the proposed method fails to distinguish itself there. It is worth noting

similar behavior for Gaussian uncertainty which corresponds to the exact MLE. As a result, we

believe the modest performance stems from the limited scale of uncertainty rather than the method

itself.

The large benefit of AML for limited data is further illustrated in simulation 3 as shown in

Fig. 3.4. The figure gives box plots for each model and the error ratio or relative improvement of

AML over OLS and TLS, i.e., ∥xAML−xTRU∥
∥xOLS−xTRU∥ and ∥xAML−xTRU∥

∥xTLS−xTRU∥ , respectively. For the histogram, all

values less than one (red line) are improvements over competing estimator for the same problem

instance. Although AML does not always outperform the alternative methods, it usually does with
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pronounced gains. The code use for simulations can be found at https://github.com/rclancyc/

approximate_mle.
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Figure 3.3: Median relative error
(
∥xEST−xTRU∥

∥xTRU∥

)
over 1,000 simulations. Number of rows fixed at

m = 100 while column count varied from n = 1 to n = 99 showing estimator performance for an
increasing number of unknowns.
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Figure 3.4: Error metrics for simulations G ∈ R55×50 over 10, 000 simulations. Top: box-plots
of relative error for different methods, i.e., ∥xTRU−xEST∥

∥xTRU∥ . Box indicates middle 50th quantile with
interior line at the median. Bars denote extreme values with outliers indicated by “+”. Bottom:
histogram of error ratio ∥xAML−xTRU∥

∥xOLS−xTRU∥ and ∥xAML−xTRU∥
∥xTLS−xTRU∥ . Values less than 1 (vertical line) indicate

AML outperformed competing method for identical data.

https://github.com/rclancyc/approximate_mle
https://github.com/rclancyc/approximate_mle
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3.7 Conclusion

In this work, we cast a regression problem in the maximum likelihood estimation framework.

We discussed difficulties associated with forming a true and exact likelihood function for models with

noise in the design matrix, then presented a method for generating an approximate log-LF based on

the saddle point approximation. The proposed log-LF is easily constructed using component-wise

moment generating functions and a simple root-finding algorithm. General gradient calculations

were presented to help efficiently solve the resultant optimization problem. Quasi-Newton methods

performed well in our numerical experiments.

Attention was paid primarily to the case of exponential clipping, Gaussian noise, rounding,

and floating point error which motivated the authors initially and provide a principled example

where the distributions involved were easily inferred. Despite our focus on several examples, the

method remains widely useful, particularly when noise in the design matrix comes from unwieldy

distributions with difficult to handle linear combinations. We envision the proposed method finding

use anytime the design matrix is subject to ambiguity.



Chapter 4

Trust Region Methods Using Hermite Interpolation

4.1 Introduction

In this chapter, our goal is to solve the problem

min
x∈Rn

f(x), (4.1)

where f : Rn → R is a differentiable function. We focus on trust region (TR) methods which are

numerical optimization schemes that iteratively solve non-convex problems such as (4.1).

An important consideration for a TR method is the choice of a model function. Linear

and quadratic Taylor approximations are popular choices with easy to interpret error bounds and

intuitive convergence results. Taylor approximations require access to derivatives, however, which

in some cases are unavailable or too costly to compute. In addition, gradient based methods are

greedy in the sense that they always step in the optimal local direction ignoring previous function

values. Second order schemes such as Newton’s Method use curvature as well, but still rely on

the Hessian (another derivative). We introduce the salient feature of trust region methods in this

chapter. Additional details can be found in the comprehensive text by Conn, Gould, and Toint

[Conn et al., 2000]

When gradients are difficult to obtain, interpolating polynomials are often used. This is a

popular choice in derivative free optimization (DFO) [Larson et al., 2019]. Interpolation involves

solving a linear system to fit function values queried at previous iterates. By tracking objective

values, the model is aware of the objective landscape, preventing the algorithm from making poor
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decisions based solely on local information. Radial basis functions have been used for interpolation

problems and show promise for computationally expensive objectives [Björkman and Holmström,

2000, Wild et al., 2008], but we focus on polynomial based interpolation models since the over-

whelming majority of DFO solvers use them.

Like other DFO such as the Nelder-Mead Simplex Method [Nelder and Mead, 1965], polyno-

mial based TR interpolation methods suffer from a number of drawbacks. First, they require, many

function queries before a useful model is formed. For an n dimensional problem to be uniquely deter-

mined, a quadratic interpolation model requires (1/2)(n2+3n) function evaluations; one constraint

for each component of the gradient and n2 + (n/2) for the degrees of freedom in the symmetric

model Hessian (add one more if the model is the model is not centered). Second, solving for the

coefficients of the interpolating polynomial in high dimension is costly since matrix inversion scales

cubically with the problem dimension. Third, the system to be solved is often poorly conditioned

resulting in solutions that are sensitive to rounding error. Perhaps the biggest limitation is that

“on serial machines, it is usually not reasonable to try and optimize problems with more than a few

tens of variables” [Conn et al., 2009, p. 5]. The authors go on to state that with recent advances,

unconstrained problems of several hundred variables can be solved, but the limitation is apparent.

Our task is to devise methods to reduce the number of iterations required for convergence.

Given the success of first order methods, it makes intuitive sense that interpolation is cast aside

when derivatives are available. On the other hand, there are situations where gradients are available

but expensive and can only be probed intermittently. Similarly, we may only have access to

partial derivatives with respect to some but not all variables. Under these circumstances, we would

like to incorporate derivative information without abandoning the simplicity of an interpolation

framework.

Surprisingly, little has been said around Hermite interpolation for trust region methods de-

spite their ubiquity in other branches of applied mathematics. They were incorporated into a

hybrid evolutionary algorithm for computationally expensive adjoint solvers in [Ong et al., 2008],

but beyond that, interpolation and gradient based trust region methods are mutually exclusive.
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Our goal is to fill this gap.

We have two motivating problems in mind. First, we imagine a cost function which depends

on two sets of variables. Suppose the objective has a simple dependence on the first set such that

derivatives can be calculated analytically, but a prohibitively complex dependence on the second

grouping. For illustrative purposes, we consider the forward model

f(p,q) =



âTL(r1,p)

âTL(r2,p)

...

âTL(rM ,p)


q+ ∥a∥1

which is expounded on in Chapter 6 (see Eqs. 6.2, 6.3, and 6.5). Using the data measured by

sensors located at {r1, r2, ..., rM}, we can form a residual sum of squares objective given by

ℓ(p,q) = ∥f(p,q)− y∥2. The dependence on q is quadratic making ∇qℓ(p,q) trivial to calculate.

The dependence on p, however, is very complicated making ∇pℓ(p,q) difficult or impossible to

compute. We can treat the objective as a black-box function in p. Although we don’t have a

full gradient, this valuable information should not be ignored and can be incorporated into a trust

region model.

In the second, we imagine gradients are only available periodically as might be encountered

in a multi-fidelity framework (low fidelity is a function evaluation, high fidelity is a function and

gradient evaluation). If a finite difference approximation or automatic differentiation is used, the

cost is at best a constant factor more than the objective itself. As a result we we would like to query

the gradient infrequently, perhaps once every 10 iterations, to reduce the cost while still including

salient information from prior gradients in successive iterations. In this sense, gradients and partial

derivatives are treated in a similar fashion as subgradients in bundle methods for convex problems

[Mäkelä, 2002].

Despite the simplistic connection between Hermite interpolation and traditional interpolation

methods used in TR methods, it does not appear that anyone has successfully employed derivative

interpolating trust region methods. We do so in this chapter, the remainder of which introduces
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trust region methods in more depth, discusses several models used in the trust region subproblem,

and outlines the Hermite interpolating framework. We introduce the minimum norm solution

for the TR subproblem along with several variants, discuss how to incorporate gradients/partial

derivatives, then explain several issues with the formulation and methods to address them. Finally,

we present an algorithm and provide numerical examples from the well known CUTEst test set

[Gould et al., 2015] to illustrate the methods merit.

4.2 Background

In this section, we introduce several topics central to our algorithm. We first present trust

region (TR) methods in generic terms followed by a discussion of interpolation based approximations

and the limitations encountered.

4.2.1 Trust region methods

As stated prior, trust region (TR) methods are numerical optimization schemes that itera-

tively solve non-convex problems like the one found in (4.1). This is accomplished by forming a

model function denoted by mk : Rn → R which approximates the objective, f , in a neighborhood

of the kth iterate, xk. That is, mk(s) ≈ f(xk + s) when the norm of s is small. This approximation

is optimized over a bounded set called the trust region on which the model is presumed to be

“trust-worthy”. TRs are usually chosen to be Euclidean norm-constrained balls with an associated

trust region radius, δk, for the kth iteration. By choosing a simple model, the trust region

subproblem,

sk = argmin
∥s∥≤δk

mk(s), (4.2)

often reduces to an eigenvalue problem that can be solved efficiently with well known techniques

[Conn et al., 2000]. Popular choices for mk are linear and quadratic Taylor series approximation,

i.e., mk(s) = f(xk) + ∇f(xk)
T s or mk(s) = f(xk) + ∇f(xk)

T s + (1/2)sT∇2f(xk)s. Once (4.2)

has been solved, the new prospective point x+ = xk + sk can be queried. When the estimated

decrease in the objective given by the model matches the actual decrease in the objective, we
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set xk+1 = x+, otherwise xk+1 = xk and the trust region radius is reduced to give a better

approximation. Mathematically, we accept the prospective iterate when ρ defined by

ρk =
Actual reduction

Predicted reduction
=

f(xk)− f(x+)

mk(0)−mk(sk)
, (4.3)

is larger than a user-specified threshold, i.e., ρk > η1 > 0. We note that the denominator for ρk ≥ 0

(if zero, no step is taken). Hence the prospective point is rejected if the objective realizes and

increase, or too small of a decrease.

If ρk is larger than the user specified parameter η2, we conclude that the model on the trust

region approximates the objective well then expand the trust region radius. The standard trust

region method is given in Alg. 1

To be useful and guarantee convergence under differentiability conditions, the models used

must be fully-linear or fully-quadratic depending the model’s polynomial degree. In essence, this

ensures that the models are “about as good” as the corresponding Taylor expansion. The con-

struction of a fully linear/quadratic model requires the maintenance of a well-poised geometric set

that can be built in a deterministic way [Conn et al., 2008a, Conn et al., 2008b] but is challenging

to maintain. Full definitions for the italicized terms can be found in [Conn et al., 2009]. An effi-

cient algorithm to maintain this well-poised set was proposed in [Scheinberg and Toint, 2010]. In

practice, users often relax requirements for the geometry improving phase which shows acceptable

performance [Fasano et al., 2009].
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Algorithm 1: Standard Trust Region

Initialize 0 < η1 ≤ η2 < 1, γinc > 1, γdec ∈ (0, 1)

Choose initial δ1 > 0, x0 ∈ Rn.

sk ← 0, k ← 0

while some stopping criterion not satisfied do

Construct model mk.

Solve sk = argmin∥s∥≤δk
mk(s).

Compute ρk = f(xk)−f(xk+sk)
mk(0)−mk(sk)

.

if ρk > η1 (successful iteration) then
xk+1 ← xk + sk.

if ρk > η2 (very successful iteration) then

δk+1 ← γincδk.

end

else

δk+1 ← γdecδk.

xk+1 ← xk.

end

k ← k + 1.

end

4.2.2 Interpolation Based Models

In this chapter, we are interested in functions with difficult to compute derivatives within the

trust region framework. We’d like to use past function values at different points to fit a model. To

this end, we are given a set of vectors, {x(1), x(2), ..., x(k)}, in Rn and corresponding function values,

{f(x(1)), f(x(2)), ... , f(x(k))}, we want to find a polynomial such that mk(x
(i)−x(k)) = f(x(i)) for

all i ∈ {1, ..., k}. This is nothing more than a standard interpolation problem. After choosing a

polynomial basis, one can form a Vandermonde matrix and solve a linear system of equations to

find the polynomial coefficients that satisfy the interpolating conditions.
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We focus on quadratic approximations using the monomial basis, i.e.,{
1, x1, x2, ..., xn,

1

2
x21,

1

2
x22, ...,

1

2
x2n, x1x2, ..., x1xn, x2x3, ..., x3xn, ..., xn−1xn

}
, (4.4)

for x = [x1, x2, , ..., xn]
T . Note that the basis elements can be split into constant, linear, and

quadratic elements. The quadratic elements can be further refined into diagonal and cross terms.

We note that the cross terms are not scaled by 1/2 since we implicitly count them twice to account

for the symmetry of the Hessian. Hence, any quadratic polynomial can be written

p(x) = c0 +
n∑

i=1

(
gixi +

1

2
hiix

2
i

)
+

n−1∑
i=1

n∑
j=i+1

hijxixj . (4.5)

For illustrative purposes, the Vandermonde system for an interpolating quadratic in n = 2 is



1 x
(1)
1 x

(1)
2

1
2(x

(1)
1 )2 1

2(x
(1)
2 )2 x

(1)
1 x

(1)
2

1 x
(2)
1 x

(2)
2

1
2(x

(2)
1 )2 1

2(x
(2)
2 )2 x

(2)
1 x

(2)
2

...
...

...
...

...
...

1 x
(6)
1 x

(6)
2

1
2(x

(6)
1 )2 1

2(x
(6)
2 )2 x

(6)
1 x

(6)
2





c0

g1

g2

h11

h22

h12


=



f(x(1))

f(x(2))

...

f(x(6))


. (4.6)

Since we know the matrix (by virtue of accessing the query points) and the right hand side

composed of function values, we can invert the system to find the interpolating coefficients. The

number of equations required to uniquely solve for a quadratic interpolating polynomial in Rn is

(1/2)(n2+3n+2); 1 for a constant, n for linear terms, n for quadratic diagonal terms, and (n2−n)/2

for cross quadratic terms due to symmetry in the Hessian. The interpolating polynomial can be

written in vector/matrix notation as

p(x) = c0 + gTx+
1

2
xTHx, where g =

g1

g2

 and H =

h11 h12

h12 h22

 . (4.7)

To be useful and guarantee convergence under differentiability conditions, the models used

must be fully-linear or fully-quadratic depending the model’s polynomial degree. In essence, this
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ensures that the models are “about as good” as the corresponding Taylor expansion. The con-

struction of a fully linear/quadratic model requires the maintenance of a well-poised geometric set

that can be built in a deterministic way [Conn et al., 2008a, Conn et al., 2008b] but is challenging

to maintain. Full definitions for the italicized terms can be found in [Conn et al., 2009]. An effi-

cient algorithm to maintain this well-poised set was proposed in [Scheinberg and Toint, 2010]. In

practice, users often relax requirements for the geometry improving phase which shows acceptable

performance [Fasano et al., 2009].

The strength of interpolation for model formation relies on its simplicity and ease of im-

plementation. Furthermore, previous function values are naturally incorporated into the model

allowing for approximations that capture some global behavior. Since basic interpolation methods

ignore derivative information, the model ignores valuable local information when its available. By

not exploiting all available information, convergence can suffer.

4.2.3 Hermite Interpolation

Hermite interpolation uses function and derivative values to fit a polynomial approximation.

Working in one-dimension for the moment, suppose we have data {f(x(1)), f ′(x(1)), f(x(2)), f ′(x(2))}

and want to fit a cubic polynomial. To find the four unknowns in the interpolating polynomial,

p(x) = a + bx + cx2 + dx3, we use the conditions p(x(1)) = f(x(1)), p(x(2)) = f(x(2)), p′(x(1)) =

f ′(x(1)), and p′(x(2)) = f ′(x(2)). This gives rise to the general Vandemonde system

1 x(1) (x(1))2 (x(1))3

1 x(2) (x(2))2 (x(2))3

0 1 2x(1) 3(x(1))2

0 1 2x(2) 3(x(2))2





a

b

c

d


=



f(x(1))

f(x(2))

f ′(x(1))

f ′(x(2)).


(4.8)

Similarly, we can fit derivatives for higher dimensions as well. For each partial derivative, we

obtain one additional constraint. Hence, if we are interpolating a quadratic over n dimensions,

interpolating a single gradient will constrain a total of n equations.
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Notation: Throughout this chapter, lowercase (uppercase) bold-faced letters or symbols

denote vectors (matrices), i.e., x (X). Non-bolded symbols represent scalars. The ith vector from

a list of vectors will be noted by x(i). The jth element from a vector v is given by vj or vj when

the meaning is clear. The ambient problem is n-dimensional and the number of points used for

interpolation is m. The element in the ith row and jth column of matrix M is given by Mij . We

borrow MATLAB style notation so that the kth column of matrix M is denoted by M:,k and Mk,:

gives the kth row.

The Hadamard or element-wise product between matrices is denoted by ⊙. Similarly, 2.

denotes the element-wise square of a matrix, i.e., M2. = M ⊙M. A length k vector of ones is

denoted by 1k.

A row from the Vandermonde matrix using point x in the monomial basis as given in (4.4)

is denoted by ϕ(x), in particular

V =



ϕ(x(1))T

ϕ(x(2))T

...

ϕ(x(n))T


(4.9)

From this point forward, we focus exclusively on polynomials without a constant offset

which is equivalent to c0 = 0 in (4.7). This can easily be accomplished at each step of our trust

region algorithm by shifting the origin for the latest iterate (or best solution) to the origin. Hence,

all distances are measured from our current location and the function values gives difference from

best solution so far. We assume that all function values are centered to an appropriate value and

only make note of it when necessary for clarity. It is sometimes helpful to split rows ϕ(x) into

linear and quadratic components (quadratic part denoted by ψ). That is ϕ(x)T = [xT, ψ(x)T] and
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V =



(x(1))T ψ(x(1))T

(x(2))T ψ(x(2))T

...
...

(x(n))T ψ(x(n))T


= [L Q] (4.10)

where L and Q represent the linear and quadratic blocks of the Vandermonde. We may periodically

use the shorthand V = ϕ(X) if X is composed of the points we use to form the Vandermonde,

i.e., XT = [x(1), ...,x(n)]. Since we are interested in using derivative based interpolation, we denote

the kth partial derivative of ϕ(x) by ϕk(x) = (∂/∂xk)ϕ(x) ∈ R(n2+3n)/2. The matrix Dj =

∇ψ(x)|x=x(j) is the Jacobian of ψ(x(j)),

Dj =



ψ1(x
(j))T

ψ2(x
(j))T

...

ψn(x
(j))T


∈ Rn×(n2+n)/2. (4.11)

Similarly, the Jacobian of the ϕ(x) at x(j) is given by

eT1 ψ1(x
(j))T

eT2 ψ2(x
(j))T

...
...

eTn ψn(x
(j))T


= [I Dj ] ∈ Rn×(n2+3n)/2, (4.12)

where ek is the kth standard basis element.

4.3 Interpolating High-Dimensional Polynomials with a Minimum Norm

Solution

We considered cases where the gradient is costly or difficult to compute. It is often the case

that the function itself is expensive to compute. Since standard interpolation based TR methods

require O(n2) interpolating conditions to uniquely determine polynomial coefficients, a prohibitively

large number of function evaluations are required before the first iteration is completed.
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To allow the method to proceed in the underdetermined case, i.e., when n < m < n2+3n
2 ,

we turn our attention to a standard technique which is to find the minimum norm solution

(MNS). The MNS penalizes the size of coefficients that compose the Hessian of the polynomial

model. Mathematically, this is cast as

min
g,h

1

2
∥h∥2 (4.13)

subject to Lg +Qh = f .

For the point about which the data and polynomial have been centered and letting g = ∇p(x) and

H = ∇2p(x), we have

p(x) = gTx+ (1/2)xT H x ⇐⇒ p(x) = gTx+ hTψ(x). (4.14)

The vector h encodes a permuted and vectorized Hessian for the quadratic polynomial model. To

make this more precise and ease the exposition of proofs later, we let r(k) and c(k) be mappings

from the kth entry of h to the corresponding row and column of the polynomial Hessian. To

illustrate for a 4d polynomial:

h = [H11, H22, H33, H44, H12, H13, H14, H23, H34]~�

H =



h1 h5 h6 h7

h5 h2 h8 h9

h6 h8 h3 h10

h7 h9 h10 h4


Note that the factor of 1/2 appearing in the left equality of (4.14) is absorbed in the vector ψ(x).

Hence, the MNS returns the model gradient and smallest Hessian that satisfy the interpolating

conditions, i.e., the quadratic with the least curvature. Given a choice, the MNS return the model

closest to linear as possible. This is intuitively appealing as linear models are simple and generally

typically prefer simple models over complex ones when possible.
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Practically, this problem can be solved by forming the KKT system. This is well known, but

we prove it below since it is the basis for more complicated variants arising later.

Proposition 1. The solution to (4.13) is given by solving the following system of equations:0 LT

L QQT


g

λ

 =

0

f

 , (4.15)

where λ ∈ Rm are Lagrange multipliers and h = QTλ.

Proof. Begin by forming the Lagrangian:

L(λ,g,h) = 1

2
hTh+ λT(Lg +Qh− f).

Differentiating and equating to zero, we have

∇ℓL = LTλ = 0, (4.16)

∇hL = h−QTλ = 0, (4.17)

∇λL = Lg +Qh− f = 0. (4.18)

Multiplying (4.17) by Q, rearranging, and plugging into (4.18) gives the KKT system when stacked

with (4.16). Since the problem is convex and has a differentiable objective and constraint, the

solution to the KKT system is necessary and sufficient for optimality [Boyd et al., 2004].

Although it is useful for expository purposes, forming Q naively is computationally expensive

task as is the construction of QQT. This can be avoided by using the following known result which

we generalize later.

Lemma 1. Let X = [x(1), x(2), . . . , x(m)]T where x(i) is the ith interpolating point such that V =

ϕ(X). Then

QQT =
1

2
(XXT)2. − 1

4
X2. (X2.)T, (4.19)

where M2. denotes the element-wise square of a matrix M.
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Proof. Consider the i, j element of QQT, i.e., (QQT)ij . We have

(QQT)ij =
n∑

k=1

1

4
(x

(i)
k )2(x

(j)
k )2 +

(n2+n)/2∑
k=n+1

x
(i)
r(k)x

(i)
c(k)x

(j)
r(k)x

(j)
c(k), (4.20)

where r(k) and c(k) are mappings from the columns h to the entries of H. Note that the first

summation reduces to
n∑

k=1

1

4
(x

(i)
k )2(x

(j)
k )2 =

1

4

(
(X2.)(X2.)T

)
ij
. (4.21)

For the second sum, we group the r(k) and c(k) factors such that

(n2+n)/2∑
k=n+1

x
(i)
r(k)x

(j)
r(k)x

(i)
c(k)x

(j)
c(k) =

n∑
p=1

n∑
q=1
q ̸=p

x(i)p x(j)p x(i)q x(j)q

=−
n∑

k=1

1

2
(x

(i)
k )2(x

(j)
k )2 +

n∑
p=1

n∑
q=1

x(i)p x(j)p x(i)q x(j)q

=− 1

2

(
(X2.)(X2.)T

)
ij
+

n∑
p=1

x(i)p x(j)p

n∑
q=1

x(i)q x(j)q (4.22)

=− 1

2

(
(X2.)(X2.)T

)
ij
+

1

2
(XXT)ij(XXT)ij

(using (4.21)) =⇒ (QQT)ij =
1

2
(XXT)2ij −

1

4

(
(X2.)(X2.)T

)
ij
. (4.23)

Hence, QQT = 1
2(XXT)2. − 1

4X
2. (X2.)T.

This plays an important role in computation. Naively, the creation of Q is O(mn2) where

m is the number of data points and n is the problem dimension. Once Q is complete, forming

the Gram matrix requires O(m2n2). Alternatively, the formation of XXT and X2. (X2.)T are

both O(m2n). The element-wise squaring is O(mn) and therefore is dominated by Gram matrix

formation. Proposition 1 reduces the computation by an order of O(n).

Similarly, when it comes to forming h, it is best best to avoid the O(mn2) operation of

constructing Q then applying it to λ. Instead, we recognize that our h encodes information for

our model Hessian. With this in mind, we have the following result that reduces the complexity of

forming h from O(m2n2) to O(mn2) for constructing H.
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Lemma 2. Suppose that p(x) = ℓTx+ 1
2x

THx = gTx+hTψ(x) where g and h solve (4.13). Then

H = M− 1

2
diag(diag(M)), (4.24)

where M = XTdiag(λ)X.

Proof. We consider the kth element of h. Since k maps to a column and row of and square matrix

via c(k) and r(k), respectively, then

Hr(k),c(k) = qk = (Q:,k)
Tλ.

When k ≤ n, this corresponds to diagonal elements with the indices matching the entry, i.e.,

Hk,k = hk =
1

2

m∑
i=1

λi(x
(i)
k )2 =

1

2
(X:,k)

T diag(λ)X:,k for k ≤ n.

Similarly, for cross terms, we have

Hr(k),c(k) =

m∑
i=1

λix
(i)
r(k)x

(i)
c(k) = (X:,r(k))

T diag(λ)X:,c(k) for r(k) ̸= c(k) for k > n.

Looping over k, we can construct the upper triangular portion of H. By symmetry of the Hessian,

we get the lower off diagonal triangular matrix. This can be written using the expression in

(4.24).

4.3.1 Other Regularization Schemes

The minimum norm solution penalizes the Frobenius norm of the Hessian. Given some prior

knowledge of the Hessian, it is possible to penalize its distance from a model Hessian that exhibits

known performance. Letting h0 be the vectorized encoding of H0, we solve

min
g,h

1

2
∥h− h0∥2 (4.25)

subject to Lg +Qh = f .

Corollary 2. The solution to (4.25) is given by solving the following system of equations:0 LT

L QQT


g

λ

 =

 0

f −Qh0

 , (4.26)
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where λ are Lagrange multipliers and h = h0 +QTλ.

Proof. Follows as in Prop. 1 with h← h−h0 and isolating constant terms in the KKT system.

4.4 Interpolating Function and Derivative Values

In some cases, we have access to certain derivatives and would like to incorporate these

values into our interpolating polynomial model. Supposing that we have derivatives at points

{x(1),x(2), ...,x(d)}, we can write this as a minimum norm problem given by

min
g,h

1

2
∥h∥2 (4.27)

subject to



L

I

...

I


g +



Q

D1

...

Dd


h =



f

∇f1
...

∇fd


.

where ∇fj = ∇f(x(j)). Similar to Prop. 1 and Cor. 2, we have the following novel result

Proposition 2. When feasible, the solution to (4.27) is given by solving the following system of

equations: 

0 LT IT . . . IT

L QQT QDT
1 · · · QDT

d

I D1Q
T D1D

T
1 . . . D1D

T
d

...
...

...
. . .

...

I DdQ
T DdD

T
1 · · · DdD

T
d





g

λ0

λ1

...

λd


=



0

f

∇f1
...

∇fd


, (4.28)

where λ0 are Lagrange multipliers associated with the function interpolating constraints and
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λ1, . . . ,λd are the multipliers for their respective gradient conditions. Furthermore,

h =

(
QT DT

1 . . . DT
d

)


λ0

λ1

...

λd


= QTλ0 +

d∑
k=1

DT
k λk. (4.29)

Proof. Follows as in Prop. 1 with LT ← [LT, I, . . . , I], QT ← [QT, DT
1 , . . . , D

T
d ], and

fT ← [fT, ∇fT
1 , . . . , ∇fT

d ].

We add the feasibility caveat to the proposition since there are many cases where the system

is infeasible. We discuss more in later sections.

As before it is costly compute QDT
j . Since Q ∈ Rm×(n2+n)/2 and Dj belongs to Rn×(n2+n)/2,

then mn inner products of cost O(n2) must be taken making it an O(mn3) operation. Using similar

tricks as before, we can form the QDT
j and DiD

T
j matrices for less. The following novel Lemmas

show that QDT
i and DiD

T
j can be formed for O(mn) and O(n2), respectively.

Lemma 3. Let X = [x(1), x(2), . . . , x(m)]T where x(i) is the ith interpolating point and Dp is the

Jacobian of ψ(x) at x(p), then

QDT
p = X⊙

(
X(x(p)1Tn )

)
− 1

2
X2. ⊙

(
1m(x(p))T

)
. (4.30)

Proof. We consider the i, j element of QDT
p which gives

(QDT
p )ij = ψ(x

(i))Tψj(x
(p)) =

1

2
(x

(i)
j )2x

(p)
j +

n∑
k=1
k ̸=j

x
(i)
k x

(i)
j x

(p)
k = −1

2
(x

(i)
j )2x

(p)
j + x

(i)
j

n∑
k=1

x
(i)
k x

(p)
k

since only elements with of ψ with the jth component represented will appear. We note that the

last summation is just the inner product between x(i) and x(p), hence

(QDT
p )ij = −

1

2
(x

(i)
j )2x

(p)
j + x

(i)
j (x(i))Tx(p).

This can be written in vector notation as

QDT
p = X⊙X(x(p)1Tn )−

1

2
X2. ⊙ 1m(x(p))T,

which is the desire result.
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We also require a fast representation for constructing the matrices DpDq. The following

Lemma reduces the complexity from O(n4) to O(n2).

Lemma 4. Let Dp and Dq be the Jacobians of ψ(x) at x(p) and x(q), respectively. The equality

holds

DpD
T
q = x(q)(x(p))T + (x(p))Tx(q)I− diag(x(p) ⊙ x(q)). (4.31)

Proof. Probing the i, j element gives

(DpD
T
q )ij = ψi(x

(p))Tψj(x
(q)),

where ψi denotes the i
th derivative of ψ. Note that the only non-zero entries of ψi are the elements

of ψ where xi is present. When i = j, we have

(DpD
T
q )ii =

n∑
k=1

x
(p)
k x

(q)
k = (x(q))Tx(p).

When i ̸= j, the only element that is non-zero for both ψi(x
(p)) and ψj(x

(q)) is the ij cross-term.

Hence

(DpD
T
q )ij = x

(p)
j x

(q)
i .

Putting the cases together yields

(DpD
T
q )ij =


x
(q)
i x

(p)
j if i ̸= j,

(x(p))Tx(q) if i = j.

Our final result is given when we rewrite in vector notation. We note that subtracting the diagonal

term is to offset double counting that occurs along the diagonal for the first two terms.

Having derived a computationally efficient method for computing the blocks of the KKT

matrix, all that remains is to find a inexpensive way to compute the Hessian.

Theorem 2. Suppose that p(x) = gTx+ 1
2x

THx = gTx+hTψ(x) where g and h solve (4.27) and

λi for i ∈ {0, ..., d} are the corresponding multipliers. Then

H = M− 1

2
diag(diag(M)) +

d∑
k=1

{
λk(x

(k))T + x(k)λT
k − diag(λk ⊙ x(k))

}
, (4.32)

where M = XTdiag(λ0)X.
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Proof. Using (4.29), we see that h = QTλ0+
∑d

i=1D
T
i λi. From Lemma 2, we know H0 = QTλ0 =

M− 1
2diag(diag(M)). We now focus on DT

i λi. This can be written as

DT
i λi =

n∑
j=1

ψj(x
(i))(λi)j .

Focusing on the kth element of DT
i λi, we know that if r(k) = c(k), i.e., a diagonal element, then

(DT
i λi)k = (λi)r(k)x

(i)
r(k). If r(k) ̸= c(k), then by direction computation (DT

i λi)k = (λi)c(k)x
(i)
r(k) +

(λi)r(k)x
(i)
c(k). Forming the symmetric matrix Hi from the vector DT

i λi, we have

Hi =



(λi)1x
(i)
1 (λi)1x

(i)
2 + (λi)2x

(i)
1 · · · (λi)1x

(i)
n + (λi)nx

(i)
1

(λi)1x
(i)
2 + (λi)2x

(i)
1 (λi)2x

(i)
2 · · · (λi)2x

(i)
n + (λi)nx

(i)
2

...
...

. . .
...

(λi)1x
(i)
n + (λi)nx

(i)
1 (λi)2x

(i)
n + (λi)nx

(i)
2 · · · (λi)nx

(i)
n


.

This can be rewritten

Hi = x(i)λT
i + λi(x

(i))T − diag(λi ⊙ x(i)). (4.33)

Summing over all l terms gives the result.

Once the KKT system has been solved for g and the multipliers, the complexity to form H

is O(mn2) as opposed to O(m2n2) giving a substantial reduction in cost. We summarize the naive

and reduced complexity using Lemmas 1, 3, and 4.

Matrix Naive Reduced

QQT O(m2n2) O(mn2)
QDT

i O(mn3) O(mn)
DiD

T
j O(n4) O(n2)

H O(m2n2) O(mn2)

Table 4.1: Summary of complexities to form matrices naively vs. construction via Lemmas 1, 3, and 4. In
addition, there is no need to store the Q or Di matrices since they can be constructed directly from X.

4.4.1 Different Regularization Schemes

We can penalize the distance from an approximate Hessian in vector form h0 with
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min
g,h

1

2
∥h− h0∥2 (4.34)

subject to



L

I

...

I


g +



Q

D1

...

Dd


h =



f

∇f1
...

∇fd


.

The only difference between the solution to (4.25) and (4.34) is for the right hand side.

Proposition 3. The solution to (4.34) is given by solving the following system of equations:

0 LT IT · · · IT

L QQT QDT
1 · · · QDT

d

I D1Q
T D1D

T
1 · · · D1D

T
d

...
...

...
. . .

...

I DdQ
T DdD

T
1 · · · DdD

T
d





g

λ0

λ1

...

λd


=



0

f −Qh0

∇f1 −D1h0

...

∇fd −Ddh0


, (4.35)

where λ0 are Lagrange multipliers associated with the function interpolating constraints and

λ1, . . . ,λd are the multipliers for their respective gradient conditions. Furthermore,

h = h0 +QTλ0 +
d∑

k=1

DT
k λk. (4.36)

Proof. The result follows from Corollary 2 and Proposition 2.

Once again, we would prefer to work without ever explicitly forming the matrices Q or Di.

We have the following results that ease the computation of the right hand side.

Proposition 4. Let h0 be the vector encoding (with a factor of 1/2 multiplied to the diagonal

components) of a symmetric matrix H0 (Hessian in our case). Then the kth element of Qh0 is

given by

(Qh0)k =
1

2
(x(k))TH0x

(k) and Dih0 = H0x
(i). (4.37)
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Proof. Starting with the kth row gives

(Qh0)k = ψ(x(k))Th0 =
n∑

i=1

n∑
j=1

1

2
x
(k)
i x

(k)
j (H0)ij =

1

2
(x(k))TH0x

(k).

4.5 Linear Dependence

Despite intuition, it turns out that there are limits around the number of gradients that can

be interpolated for the quadratic model. There is redundant information after two gradients and

their corresponding function values are used for interpolation. Similarly, we have dependent rows

in the matrix when 3 or more gradients are interpolated. To see this, we consider the constructive

theorem.

Theorem 3. Suppose that gradients are calculated and interpolated at x(1), x(2), and x(3). Then

the matrix

G =


I D1

I D2

I D3

 (4.38)

is rank deficient where Di is the Jacobian of ψ(x(i)).

Proof. We assume that the points x(1), x(2), and x(3) are distinct and span a three-dimensional

subspace otherwise the result is trivially satisfied. Note the that rows of G are given by the partial

derivatives of the vector ϕ, i.e.,

Gi,: =
∂

∂xi mod n
ϕ(x(⌊i/n⌋+1)).

For notational simplicity, we let ϕi = (∂/∂xi). Via Gaussian elimination, we see that the linear

combination of rows equals zero,

n∑
i=1

(x
(1)
i − x

(2)
i )

[
ϕi(x

(3))− ϕi(x
(1))
]
− (x

(1)
i − x

(3)
i )

[
ϕi(x

(2))− ϕi(x
(1))
]
.
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The same can be shown for two gradients with their corresponding function values although

we omit the proof here.

Empirically, we observe the rank deficiency increases in a predictable way. We expect the

following conjecture is simple to prove be have not had a chance to complete it.

Conjecture 1. For a general Vandermonde matrix constructed with d points that span a d-

dimensional subspace and their corresponding gradient blocks, i.e.,

V =



L Q

I D1

...
...

I Dd


, (4.39)

the matrix V has exactly d2−d
2 linearly dependent rows.

This linear dependence results in an inconsistent system of constraints. We use sketching to form a

full rank approximation by eliminating the required number of rows as dictated by the conjecture

above. We can view sketching here as a random weighted average of the constraints which prevents

us from discarding any single (possibly significant row).

4.6 Dimension Reduction to Preserve Interpolation Feasibility

As mentioned in the previous section, linear dependence becomes a concern when more than

one gradient is incorporated into the model. One method to address the issue is by discarding the

number of dependent rows. Although simple, this approach is coarse as it eliminates all information

from a particular interpolation condition. In addition, it is possible to choose an adversarial ar-

rangement for dropped rows that still results in a singular KKT matrix. We’d like a robust method

to accomplish this task.

We find inspiration in the field of sketching which uses certain classes of randomized linear

transformations to preserve distances between points when embedded into a lower dimensional sub-

space with high probability [Martinsson and Tropp, 2020]. Suppose we want to find the projection
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of the columns of V onto the subspace spanned by the range of an orthonormal matrix S. The ith

column of B = SSTV gives the projection of the ith column of V (vi) onto the range of S.

Accordingly, the ith column of STV gives the coordinates of the projection of vi in the

basis col(B). The Johnson–Lindenstrauss lemma [Johnson and Lindenstrauss, 1984] shows that

if S has enough rows (independent of the dimension of v) there exists a projection into a lower

dimensional subspace that preserves relative distance between points. This work was extended to

show there exist easily computed and fast to apply transformations that preserve distances with

high probability [Ailon and Chazelle, 2009]. Although further discussion of sketching is beyond

the scope of this work, we borrow their ideas by projecting the interpolating constraints into a

random subspace of the appropriate dimension to yield a feasible system. The reason for random

projections is to avoid adversarial instances where the “wrong” rows are dropped yielding a smaller

but still inconsistent system. In what follows, it may be helpful to think of S as Gaussian which is

one of the simplest forms of a sketching matrix.

To illustrate, consider a full rank matrix in Rm×n with a row of zeros appended to it. In this

extreme example, we must drop the zero row to have a full rank matrix. Dropping any other row

will result in a matrix with one less row that is still rank deficient. To avoid problematic instances

such as these, we sketch it randomly which in essence combines all the constraints, then drop one

row. For a Gaussian sketch we will have a full rank system with the probability 1.

Returning to problem (4.27) where m+ dn interpolation conditions must be satisfied, we use

a sketching matrix S ∈ R(m+dn)×r where r is the desired reduced dimension which is less than or

equal to the rank of the KKT system. We can now work with the coordinates in the columns space

of S.

ST





L

I

...

I


g +



Q

D1

...

Dd


h


= ST



f

∇f1
...

∇fd


. (4.40)
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For notational simplicity, let ST = [ST
0 ,S

T
1 , . . . ,S

T
d ] with S0 ∈ Rm×r and Si ∈ Rn×r for i > 0 and

L0

L1

...

Ld


=



L

I

...

I


,



Q0

Q1

...

Qd


=



Q

D1

...

Dd


, and



v0

v1

...

vd


=



f

∇f1
...

∇fd


. (4.41)

We can rewrite (4.40) as

(
d∑

i=0

ST
i Li

)
︸ ︷︷ ︸

= A

g +

(
d∑

i=0

ST
i Qi

)
︸ ︷︷ ︸

= B

h =
d∑

i=0

ST
i vi︸ ︷︷ ︸

= c

. (4.42)

The resultant problem is familiar

min
g,h

1

2
∥h∥2 (4.43)

subject to Ag +Bh = c.

The same procedure as before gives the KKT system0 AT

A BBT


g

λ

 =

0

c

 . (4.44)

The A blocks are easy to compute since there is no cost associated with forming Li. An

appropriately chosen sketch can be applied quickly such as partial a Fourier or Hadamard transform.

The same is true for the right hand side. Turning our attention to BBT, we see that

BBT =
d∑

i=0

d∑
j=0

ST
i QiQ

T
j Sj .

Fortunately, as shown in Section 4.4, theQiQ
T
j are computed at a costO(m2n) forQ0Q

T
0 orO(mn2)

for DiD
T
j . Importantly, we apply the sketching matrices to QiQ

T
j and not the Q’s directly. The

cost to apply any sketch matrix is at most O(max{m2r, n2r,mnr}). Since there are d matrices in

the summation, the complexity of applying the sketching and summing is O(r max{m2, dn2}).

Once we’ve solved for g and the multipliers, we can construct h easily with

h = BTλ = QT(S0λ) +
d∑

i=1

DT
i (Siλ). (4.45)
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The sketch matrices can be applied cheaply to λi. Letting λ̃i = Siλ gives the vector representation

of the Hessian

h = QTλ̃0 +
d∑

i=1

DT
i λ̃i. (4.46)

Corollary 3. Suppose that p(x) = gTx + 1
2x

THx = gTx + hTψ(x) where g and h solve (4.40)

and λ is the corresponding multiplier. Defining λ̃i = Siλ gives the representation for the model

Hessian

H = M− 1

2
diag(diag(M)) +

d∑
k=1

{
λ̃k(x

(k))T + x(k)λ̃
T
k − diag(λ̃k ⊙ x(k))

}
, (4.47)

where M = XTdiag(λ̃0)X.

Proof. Replacing λi in Theorem 2 with λ̃i immediately yields the result.

Since inversion of the matrix is the dominating computational cost, we don’t worry about

the complexity of applying the sketch.

4.7 Algorithm

We present our algorithm below. The main difference between the generic trust region algo-

rithm and the one proposed here is the maintenance and improvement of an interpolating set and

our formulation of the subroutine HermiteInterpolant which uses derivative information to form

a quadratic model. As we began writing our results, it became clear that there were many variants

worthy of pursuit. The most notable omission is the approximate Hessian. We opted to focus on the

Algorithm 2: HermiteInterpolant

Input: Current iterate x, current function value f , current gradient (or null value) g,
interpolant data X, f , and G.

Output: Gradient g and Hessian H for model interpolating polynomial.

Center data, X← X− x and f ← f − f .
Determine gradients in G and corresponding points to interpolate.
Construct the KKT system in (4.44).
Solve for g and λ.
Use (4.45), (4.46), and (4.47) to form H.
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minimum norm solution here for simplicity’s sake. Beyond ease of exposition, it is unclear whether

SR1 or BFGS type updates make sense when curvatures pairs are computed periodically rather

than every step. We compare the MNS to a BFGS penalized version in our numerical examples

below, but before using with confidence, additional analysis should be performed.

Algorithm 3: HermiteTrustRegionMethod

Input: x0 ∈ Rn, max # gradients, min # gradients, 0 < ηgood ≤ ηgreat < 1, γinc > 1,
γdec ∈ (0, 1), p ≥ 0, δ0 > 0.
Output: Optimal x∗ solving (4.1)

Sample n− 1 points around x0 and store as rows of X = [x0,x1, . . . , xn]
T

Evaluate f(x) at n points interpolating conditions (sample n points or interpolate gradient)
while Not converged do

g, H← HermiteInterpolant(xi, fi,gi,X, f).
Construct model mk(s) = gTs+ (1/2) sTHs.
Solve (4.2) to obtain sk.
x+ ← xk + sk.
if k mod p = 0 then

g← ∇f(x+).
else

g← Null
end
Compute ρk as in (4.3).
if ρk > ηgood (successful iteration) then

xk+1 ← x+

if ρk > ηgreat and ∥sk∥ ≥ 0.9 δk (very successful iteration) then
δk+1 ← γincδk.

else
δk+1 ← γdecδk.
xk+1 ← xk.

end
Perform geometry improving step to to update X, f ,G (see [Conn et al., 2009] for
details).
k ← k + 1.

end

4.8 Numerical Examples

For our numerical experiments, we ran our algorithm in Python on the unconstrained CUTEst

problems [Gould et al., 2015] of dimension 10 to 150. Our mean and median problem dimension was

65. The CUTEst test suite is a collection of differentiable but non-convex optimization problems
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of varying size and difficulty used in the field of optimization to test solver performance. Although

the CUTEst problems are written in Fortran, we used the PyCUTEst [Fowkes and Roberts, 2018]

package to port the problems into Python. We ran each solver until the model gradient fell below

10−6, the trust region shrank below machine precision, or until 1000 iterations had been completed.

We compared our Hermite interpolation based TR algorithm to one using standard interpolation

which was accomplished by specifying that exactly zero gradients should be used to construct an

interpolation model. We plotted log-log plots of the scaled function values by iteration. The scaled

function value for solver s at iteration i is

fs,i,scaled =
fs,i − Fmin

Fmax − Fmin
+ ϵ, (4.48)

where Fmin and Fmax are the minimum and maximum function values encountered over all iterations

across all solvers for a particular problem. The offset ϵ is used to allow plotting on a log-scale.

Although our choice of ϵ will impact the appearance of different curves for each solvers in the last

few iterations, we are concerned primarily with the qualitative behavior over time. For our purposes

here, we set ϵ = 10−6.

We focused on interpolating 1, 2, or 3 gradients with new gradients calculated every 10

iterations. We have included four representative examples in this chapter to avoid overwhelming

the reader. Additional plots for other CUTEst problems can be found in Appendix Figure 4.1 shows

the performance of the Hermite interpolation model using the minimum norm solution. Figure 4.2

shows the same, but with the interpolated model regularized to the BFGS approximate Hessian.

Finally, Figure 4.3 compares the BFGS to the minimum norm interpolants fitting two gradients

with an update every 10 iterations. The horizontal axis gives the iteration count. In all cases,

performance of the standard interpolation method is provided for reference. We only show four

problems in these figures to avoid overwhelming the reader, but a comprehensive set can be found

in Appendix B.

The Hermite based models do not universally outperform the standard function interpolation

models, but do better in general. It is also clear that using more gradients doesn’t always result
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Figure 4.1: Scaled function values (y-axis) at each iteration (x-axis) using minimum norm solution
(MNS) for Hermite TR model with 1, 2, or 3 gradients interpolated. New gradient computed every
10 iterations. Standard interpolation based TR model included for comparison.

in improved performance. This might be the result of infrequently updated gradients becoming

“stale” and preserving information from a different basin of the objective’s domain. In such non-

convex cases, the quadratic may not be expressive enough. It is not clear that using a BFGS update

matrix for regularization purposes gives a noticeable benefit. Since curvature pairs are typically

constructed via back-to-back iterations where a secant line reasonably approximates a directional

derivative, infrequently updated gradients might be too crude to form useful approximation. Fur-

ther investigation is warranted but is beyond the scope of this chapter. In general, the results are

promising. Even infrequently updated gradients appear to improve the behavior of trust region

methods compared to standard interpolation.



69

100 101 102 103
10 6

10 5

10 4

10 3

10 2

10 1

100
TOINTGOR

HITR, 10 its. 1 grad., BFGS
HITR, 10 its. 2 grad., BFGS
HITR, 10 its. 3 grad., BFGS
Int TR

100 101 102 103
10 6

10 5

10 4

10 3

10 2

10 1

100
TRIGON2

100 101 102 103
10 6

10 5

10 4

10 3

10 2

10 1

100
COATING

100 101 102 103
10 6

10 5

10 4

10 3

10 2

10 1

100
SPIN2LS

Figure 4.2: Scaled function values (y-axis) at each iteration (x-axis) regularized to BFGS approxi-
mate Hessian for Hermite TR model with 1, 2, or 3 gradients interpolated. New gradient computed
every 10 iterations. Standard interpolation based TR model included for comparison.

4.9 Conclusion

We introduced a method for interpolating gradients or partial derivatives for a quadratic

trust region model in higher dimension. Importantly, our algorithm relies primarily on function

values and can be iterated even when derivatives are unknown. We provided expressions for com-

puting blocks matrices necessary to solve the linear system for finding polynomial coefficients in the

TR model that drastically reduced both the computational complexity and memory requirements

compared to a naive implementation.

We also showed that the problem can be easily modified to accommodate an approximate

Hessian and penalize models that have disparate second derivatives. Complications associated with
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Figure 4.3: Scaled function values (y-axis) at each iteration (x-axis) comparing BFGS Hessian
regularized model to MNS model for Hermite TR with 2 gradients interpolated. New gradient
computed every 10 iterations. Standard interpolation based TR model included for comparison.

linear dependence were discussed as were methods for handling this redundancy when multiple

gradients are interpolated. Given the cost of solving the KKT system, it is worth investigating

how low dimensional embeddings might be used to reduce the cost of finding a model for each

iteration. Other future work includes establishing convergence rates for Hermite interpolation

and investigating how gradients might be used to improve the complexity of geometry improving

subroutines that were absent from our treatment here.



Chapter 5

TROPHY: Trust Region Optimization using a Precision HierarchY

5.1 Introduction

Optimization methods are used in many applications, including engineering, science, and

machine learning. The memory requirements and run time for different methods have been studied

extensively and determine the problem sizes that can be run on existing hardware. Similarly, the

energy consumption of each method determines its cost and carbon footprint, which is a growing

concern [Hao, 2019].

With the desire to incorporate more data into models and ever-increasing computational

power, problem scales have grown as well. To improve efficiency, modern computers tightly integrate

graphical processing units (GPUs) and other accelerators. Many of these units natively support

data types of differing precision to lessen the storage and computational load. Previous work

has found significant differences in the overall energy consumption for double- and single-precision

computations [Molka et al., 2010, Kestor et al., 2013]. Server-level products such as NVIDIA Tensor

cores in V100 GPUs show 16× improvement over traditional double precision [Abdelfattah et al.,

2021].

Such gains come at a cost, however. Classical algorithms such as the Gram–Schmidt process

are well known to suffer from loss of orthogonality and numerical instability due to limited preci-

sion [Golub and Van Loan, 1996]. In an effort to ameliorate algorithmic issues with accuracy and

stability, there has been a flurry of activity using mixed precision. These methods utilize multiple

data types in a principled fashion to reduce the computational burden without sacrificing accu-
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racy. A few of the many applications are tomographic reconstruction [Doucet et al., 2019], seismic

modeling [Ichimura et al., 2018], and neural network training [Jia et al., 2018, Micikevicius et al.,

2018, Wang et al., 2018, Carmichael et al., 2019]. Mixed-precision methods have been used gener-

ically to minimize the cost of linear algebra methods [Abdelfattah et al., 2021], iterative schemes,

and improved finite element solvers [Strzodka and Göddeke, 2006, Göddeke et al., 2007].

There are a variety of auto-tuning algorithms that attempt to identify variables within a pro-

gram that can safely be cast in a lower precision, while satisfying some accuracy constraint [Chiang

et al., 2017a] [Graillat et al., 2019, Guo and Rubio-González, 2018, Menon et al., 2018, Rubio-

González et al., 2013]. Our method proposed does not attempt to identify low precision candidates

nor do we try satisfying accuracy constraints. All computation within the objective/gradients are

performed in the lowest precision possible and only increase after it is deemed necessary for the

solver to proceed.

A recent paper by Gratton and Toint [Gratton and Toint, 2020] illustrates potential savings in

an optimization setting via variable-precision trust region (TR) methods. We investigate the ideas

proposed in their work but with an important difference. In particular, their algorithm (TR1DA)

requires access to an approximate objective, f̄(xk, ωf,k), and gradient, ḡ(xk, ωg,k), where ωf,k and

ωg,k are uncertainty parameters (for the kth iterate xk) that satisfy

|f̄(xk, ωf,k)− f(xk)| ≤ ωf,k and
∥ḡ(xk, ωg,k)− g(xk)∥
∥ḡ(xk, ωg,k)∥

≤ ωg,k.

Their error model requires user specified absolute error bounds on function and gradient values;

such bounds are difficult to realize in practice as computational complexity grows for reasons such

as catastrophic cancellation and accumulated round-off error. Our focus here is on designing an

algorithm that performs well without assumptions on the output error when using lower precision.

In this paper, we introduce TROPHY (Trust Region Optimization using a Precision

HierarchY), a mixed-precision TR method for unconstrained optimization. We provide practically

verifiable conditions intended to determine whether the error related to a current precision level

may be interfering with the dynamics of the TR algorithm. If the conditions are not satisfied, we
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increase the precision level until they are. Our goal is to lighten the computational load without

sacrificing accuracy of the final solution. By using a limited-memory, symmetric rank-1 update (L-

SR1) to the approximate Hessian, the method is suitable for large-scale, high-dimensional problems.

We compare the method with a standard TR method—supplied with access to either a single- or

double-precision evaluation of the function and gradient—on the Constrained and Unconstrained

Testing Environment with safe threads (CUTEst) test problem collection [Gould et al., 2015] and

on a large-scale weather model based on the PyDDA software package [Jackson et al., 2020].

Since computational, storage, and communication savings are based on hardware implemen-

tations of different precision types rather than assumed theoretical values, our primary metric for

comparison will be adjusted function evaluations rather than time. Simply put, adjusted function

evaluations discount computations performed in lower-precision levels. The goal here is to provide

a proof of concept for computational gains attainable by exploiting variable precision in TR meth-

ods. In practice, improvements in energy consumption, time, communication, and memory must

be realized through optimized hardware which is beyond the scope of this paper.

5.2 Background

Consider the unconstrained minimization of a differentiable function f : Rn → R,

min
x∈Rn

f(x). (5.1)

We are motivated by problems where the objective and its derivatives are expensive to calculate as

is typical for large-scale computing. In this paper we focus on the TR framework, but could have

studied line-search methods instead such as L-BFGS, which is a popular quasi-Newton method

distributed in SciPy [Virtanen et al., 2020]. However, it is remarkably simpler to illustrate the

effect of error on the quality of models within a TR method; that is likely the reason TR methods

were employed in [Gratton and Toint, 2020]. In the following subsections we give an overview of

the general framework for TR methods and describe the model function used in our algorithm.
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5.2.1 Trust Region Methods

Trust region methods are iterative algorithms used for numerical optimization. At each

iteration (with the counter denoted by k), a model function mk : Rn → R is built around the

incumbent point or iterate, xk, such that mk(0) = f(xk) and mk(s) ≈ f(xk + s). The model,

mk, is intended to be a “good” local model of f on the trust region, {s ∈ Rn : ∥s∥ ≤ δk} for

δk > 0. We refer to δk as the trust region radius. A trial step, sk, is then computed via a(n

approximate) solution to the trust region subproblem,

sk = argmin
∥s∥≤δk

mk(s), (5.2)

for s ∈ Rn. By an approximate solution to the TR subproblem (5.2), we mean that one requires

the Cauchy decrease condition to be satisfied:

f(xk)−mk(sk) ≥
µ

2
min

{
δk,
∥gk∥
C

}
, (5.3)

where µ and C are constants and gk = ∇m(xk). A common choice for mk is a quadratic Taylor

expansion, namely, mk(s) = f(xk)+gT
k s+

1
2s

T∇2f(xk)s. In practice, ∇2f(xk) is typically replaced

with a (quasi-Newton) approximation.

Having computed sk, the standard TR method then compares the true decrease in the func-

tion value, f(xk) − f(xk + sk), with the decrease predicted by the model, mk(0) − mk(sk). In

particular, one computes the quantity

ρk =
f(xk)− f(xk + sk)

mk(0)−mk(sk)
. (5.4)

If ρk is sufficiently positive (ρk > ηgood for fixed ηgood > 0), then the algorithm accepts xk + sk

as the incumbent point xk+1 and may possibly increase the TR radius δk < δk+1 (if ρk > ηgreat

for fixed ηgreat ≥ ηgood). This scenario is called a successful iteration. On the other hand,

if ρk is not sufficiently positive or is negative (ρk < ηgood), then the incumbent point stays the

same, xk+1 = xk, and we set δk+1 < δk. For the experiments below, we chose ηgood = 10−5 and

ηgreat = 0.10. This process is iterated until a stopping criterion is met, e.g., when the gradient
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norm ∥∇f(xk)∥ is below a given tolerance. Under mild assumptions, TR methods asymptotically

converge to stationary points of f(x) [Conn et al., 2000].

5.2.2 Model Function

The model function, mk, must be specified for a TR algorithm. Popular choices include linear

or quadratic approximations of the objective using Taylor series or interpolation methods; the latter

are often employed in derivative-free optimization [Larson et al., 2019]. Since many applications

of interest are high-dimensional or have costly objective and derivative functions, it is difficult if

not impossible to compute and/or store the Hessian matrix for use in quadratic TR models with

memory requirement scaling as O(n2). A common technique that exploits derivative information

while keeping the cost low is to use curvature pairs given by sk and yk = ∇f(xk+sk)−∇f(xk). After

each successful iteration, the curvature pairs are used to update the current approximate Hessian

denoted by Hk. These updates employ secant approximations of second derivatives. Common

update rules include BFGS, DFP, and SR1 [Nocedal and Wright, 2006].

In this work we use a limited-memory symmetric rank-1 update (L-SR1) to the approximate

Hessian. This update rule requires the user to set a memory parameter that specifies a number

of secant pairs to use in the approximate Hessian. Since we require only a matrix-vector product

and not the explicit Hessian, we can implement a matrix-free version reducing the storage cost to

O(n). Thus, our TR subproblem is

sk = argmin
∥s∥≤δk

sT∇f(xk) +
1

2
sTHks, (5.5)

which we recast and approximately solve using the Steihaug conjugate gradient method imple-

mented in [Berahas et al., 2019][Appendix B.4].

In the next section we describe the dynamic precision framework and present criteria for

when precision should switch. We then are prepared to give a formal statement of TROPHY. In

Section 5.4 we describe the problems on which we have tested TROPHY, and in Section 5.5 we

discuss the results of our experiments.
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5.3 Method

We assume access to a hierarchy of arithmetic precisions for the evaluation of both f(x) and

∇f(x), but the direct (infinite-precision) evaluation of f(x),∇f(x) is unavailable. We formalize

this slightly by supposing we are given oracles that compute fp(x),∇fp(x) for p ∈ {0, . . . , P}.

With very high probability, given a uniform distribution on all possible inputs x, the oracles satisfy

the inequalities

|fp(x)− f(x)| > |fp+1(x)− f(x)|, ∥∇fp(x)−∇f(x)∥ > ∥∇fp+1(x)−∇f(x)∥.

For a tangible example, if intermediate calculations involved in the computation of f(x) can be

done in half, single, or double precision, then we can denote f0(x), f1(x), and f2(x) as the oracles

using only half, single, or double, respectively.

To build on the generic TR method described in Section 5.2, we must specify when and how

to switch precision. We can identify two additional difficulties presented in the multiple-precision

setting. First, it is currently unclear how to compute ρk in (5.4) since our error model assumes we

have no access to an oracle that directly computes f(·). Second, because models mk typically use

function and gradient information provided by f(·) and ∇f(·), we must specify how to construct

models using lower precision oracles.

For the first of these two issues, we make a practical assumption that the highest level of

precision available to us should be treated as if it were infinite precision. Although this

is a theoretically poor assumption, virtually all computational optimization makes it implicitly;

algorithms are analyzed over the real numbers but are typically implemented using floating point

arithmetic (often double). Thus, in the notation we have developed, the optimization problem we

actually aim to solve is not (5.1) but

min
x∈Rn

fP (x), (5.6)

so that the ρ-test in (5.4) is replaced with

ρk =
fP (xk)− fP (xk + sk)

mk(0)−mk(sk)
=

aredk
predk

. (5.7)
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The values ared and pred were introduced to denote “actual reduction” and “predicted reduction”,

respectively. We note that computing (5.7) still entails two evaluations of the highest-precision ora-

cle, fP (·), which is exactly what we hoped to avoid by using mixed-precision. Our algorithm avoids

the cost of full-precision evaluations by dynamically adjusting the precision level pk ∈ {0, . . . , P}

between iterations so that in the kth iteration, ρk is approximated by

ρ̃k =
fpk(xk)− fpk(xk + sk)

mk(0)−mk(sk)
=

eredk
predk

, (5.8)

introducing ered to denote “estimated reduction”. To update pk, we are motivated by a strategy

similar to one employed in [Heinkenschloss and Vicente, 2002] and [Kouri et al., 2014]. We introduce

a variable θk that is not initialized until the end of the first unsuccessful iteration and set p0 = 0.

When the first unsuccessful iteration is encountered, we set

θk ← |aredk − eredk| . (5.9)

Notice that we must incur the cost of two evaluations of fP (·) following the first unsuccessful

iteration in order to compute aredk. From that point on, θk is involved in a test triggered on

every unsuccessful iteration (in which the TR radius is sufficiently small) to determine whether the

precision level, pk, should be increased. We compute θk and test for precision when δk < ∆prec.

The value ∆prec is set to be a length scale where numerical imprecision is a concern.

Introducing a predetermined forcing sequence {rk} satisfying rk ∈ [0,∞) for all k and

lim
k→∞

rk = 0, and fixing a parameter ω ∈ (0, 1), we check on any unsuccessful iteration whether

θωk ≤ ηmin {predk, rk} , (5.10)

where η = min {ηgood, 1− ηgreat}. If (5.10) does not hold, then we increase pk+1 = pk + 1 and

again update the value of θk according to (5.9) (thus incurring two more evaluations of fP (·)). The

reasoning behind the test in (5.10) is that if (the unknown) ρk in (5.7) satisfies ρk ≥ η, then

η ≤ ρk =
aredk
predk

≤ |aredk − eredk|+ eredk
predk

≈ θk + eredk
predk

=
θk

predk
+ ρ̃k. (5.11)

Thus, for the practical test (5.8) to be meaningful, we need to ensure that θk/predk < η, which

is what (5.10) attempts to enforce. The use of ω and the forcing sequence in (5.10) is designed to
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ensure that we eventually do not tolerate error, since (5.11) involves an approximation due to the

estimate θk. The forcing sequence would likely be necessary to guarantee convergence for theoretical

analysis, but is not critical to the performance of a practical algorithm, and was not employed in

our implementation. For concreteness, if a forcing sequence were employed, one might consider a

slowly decaying sequence such as rk = 1/
√
k.

It remains to describe how we deal with our second identified difficulty, the construction of

mk in the absence of evaluations of f(·) and ∇f(·). As is frequently done in trust region methods,

we will employ quadratic models of the form

mk(s) = fk + g⊤
k s+

1

2
s⊤Hks. (5.12)

Having already defined rules for the update of pk through the test (5.10), we take in the kth iteration

fk = fpk(x) and gk = ∇fpk(x). In theory, we require Hk to be any Hessian approximation with

a spectrum bounded above and below uniformly for all k. In practice, we update Hk via L-SR1

updates [Byrd et al., 1994]. By implementing a reduced-memory version, we need not store an

explicit approximate Hessian, thus greatly reducing the memory cost and significantly accelerating

the matrix-vector products in our model. Pseudocode for TROPHY is provided in Algorithm 4.

5.4 Test Problems and Implementations

Our initial implementation of TROPHY is written in Python. To validate the algorithm,

we focus on a well-known optimization test suite and a problem relating to climate modeling. In

all cases, the algorithms terminate when one of the following conditions are met: (1) the first-

order condition is satisfied, namely, ∥∇fP (xk)∥ < ϵtol; (2) the TR radius is smaller than machine

precision, namely, δk < ϵmachine; or (3) the first two conditions have not been met after some

maximum number of iterations. Condition 1 is a success whereas conditions 2 and 3 are failed

attempts. We describe the problem setup and implementation considerations in the current section

and then discuss results in Section 5.5.
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Algorithm 4: TROPHY

Initialize 0 < ηgood ≤ ηgreat < 1, ω ∈ (0, 1), γinc > 1, γdec ∈ (0, 1), ∆prec ∈ (0, 1), forcing
seq. {rk}.
Choose initial δ0 > 0, x0 ∈ Rn.
θ0 ← 0, pk ← 0, k ← 0, failed← FALSE
while some stopping criterion not satisfied do

Construct model mk.
(Approximately solve) (5.2) to obtain sk.
Compute ρ̃k as in (5.8).
if ρ̃k > ηgood (successful iteration) then

xk+1 ← xk + sk.
if ρ̃k > ηgreat (very successful iteration) then

δk+1 ← γincδk.
end

else
if not failed then

Compute θk as in (5.9).
failed← TRUE.

end
if (5.10) holds or δk ≥ ∆prec then

δk+1 ← γdecδk.
else

pk+1 ← pk + 1.
Compute θk as in (5.9).
δk+1 ← δk.

end
xk+1 ← xk.

end
k ← k + 1.

end

5.4.1 CUTEst

Our first example used the CUTEst set [Gould et al., 2015], which is well known within

the optimization community and offers a variety of problems that are challenging to solve. Each

problem is given in a Standard Input Format [Conn et al., 2013] file that is passed to a decoder

from which Fortran subroutines are generated. The problems can be built directly by using single

or double precision, making the set useful for mixed-precision comparison.
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5.4.1.1 Python Implementation of CUTEst:

The PyCUTEst package [Fowkes and Roberts, 2018] serves as an interface between Python

and CUTEst’s Fortran source code. The problems are compiled via the interface; then Python

scripts are generated and cached for subsequent function calls. Although CUTEst natively sup-

ports both single- and double-precision evaluations, at the time of writing, the single-precision

implementations are concealed from the PyCUTEst API.

To access single-precision evaluations, we used PREDUCER [Hückelheim, 2019], a Python

script written to compare the effect of round-off errors in scientific computing. PREDUCER parses

Fortran source code and downcasts double data types to single. To allow for its use in existing code,

all single data types are recast to double after function/gradient evaluation but before returning to

the calling program. Because of the overhead associated with casting operations, we do not expect

improvements in computational time. However, performance gains in terms of both accuracy and a

reduction in the number of adjusted function calls for an iterative algorithm should be realized. We

built the double-precision functions, too, and wrapped both functions to pass as a unified handle

to TROPHY.

For the subset of unconstrained problems with dimension less than or equal to 100, we ran

TROPHY with single/double switching along with the same TR method using only single or double

precision. Our first-order stopping criterion was ∥∇fP (xk)∥ < 10−5, and the maximum number of

allowable iterations was 5,000. We show results for problems solved by at least one TR in Sec. 5.5.

5.4.1.2 Julia Implementation of CUTEst:

The Julia programming language supports variable-precision floating-point data types. More

precisely, it allows users to specify the number of bits used in the mantissa and expands memory for

the exponent as necessary to avoid overflow. This is in contrast to the IEEE 754 standard that uses

11 (5), 24 (8), and 53 (11) bits for the mantissa (exponent) of half-, single-, and double-precision

floats, respectively. In practice, one can assign enough bits for the exponent to avoid dynamic
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reallocation.

To exploit variable precision, we hand-coded several of the unconstrained CUTEst objectives

in Julia and then computed gradients with forward-mode automatic differentiation (AD) using

the ForwardDiff.jl package [Revels et al., 2016]. We wrote a Julia port that allows us to call

this code from Python for use in TROPHY. We opted to use forward-mode AD for its ease of

implementation. In all cases used, the hand-coded Julia objective and AD gradient were compared

against the Fortran implementation and found to be accurate.

We compared TROPHY with TR methods using a fixed precision of half, single, and double

precision (11, 24, and 53 bits, respectively). We used the same first-order condition of ∥∇f(xk)∥ <

10−5 but allowed this implementation to run only for 1,000 iterations. For TROPHY, we used

several precision-switching sets: {24, 53}, {11, 24, 53}, {8, 11, 17, 24, 53}, and {8, 13, 18, 23,

28, 33, 38, 43, 48, 53}. The third set of precisions was motivated by the number of mantissa bits

in bfloat16, fp16, fp24, fp32, and fp64, respectively. The last set increased the number of bits in

increments of 5 up to double-precision.

5.4.2 Multiple Doppler Radar Wind Retrieval:

We also looked at a data assimilation problem for retrieving wind fields for convective storms

from Doppler radar returns. Shapiro and Potvin [Shapiro et al., 2009, Potvin et al., 2012] proposed

a method for doing so that optimizes a cost functional based on vertical vorticity, mass continuity,

field smoothness, and data fidelity, among others. Although the function calls are fairly simple, the

wind field must be reconciled on a 3-D grid over space, each with an x, y, and z component. For

a 39 × 121 × 121 grid, there are 1, 712, 997 variables. Therefore, reducing computational, storage,

and communication costs where possible is paramount.

Our work centered on the PyDDA package [Jackson et al., 2020], which was written to solve

the aforementioned problem. We amended the code in two significant ways. First, to improve

efficiency, we rewrote portions of the code to use JAX, an automatic differentiation package using

XLA that exploits efficient computation on GPUs [Bradbury et al., 2018]. Since JAX natively
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supports single precision on CPUs and can be recast to half and double as desired, it nicely serves

as a proof of concept on a real application. Second, we modified the solver to use TROPHY rather

than the SciPy implementation of L-BFGS.

Once again, we compared TROPHY against single- and double-precision TR methods. TRO-

PHY switched among half, single, and double precision. To avoid overflow initially for half-precision,

we warm started the algorithm by providing it with the tenth iterate from the double-precision TR

method, i.e., x10. We perturbed this initial iterate 10 times and used the perturbed vectors as the

initial guess for each algorithm (including double TR). We measured the average performance when

solving each problem to different first-order conditions: ∥∇f(xk)∥ < 10−3 and ∥∇f(xk)∥ < 10−6.

The maximum number of allowable iterations was 10,000.

5.5 Experimental Results

We display results across the CUTEst set using data and performance profiles [Dolan and

Moré, 2002, Moré and Wild, 2009]. For a given metric, performance profiles help determine how

a set of solvers, S, performs over a set of problems, P. The value vij > 0 denotes a particular

metric (say, the final gradient norm) of the jth solver on problem i. We can then consider the

performance of each solver in relation to the solver that performed best, that is, the one that

achieved the smallest gradient norm. The performance ratio is defined as

rij =
vij

minj{vij}
. (5.13)

Smaller values of rij are better since they are closer to optimal. The performance ratio was set

to ∞ if the solver failed to solve the problem. We can evaluate the performance of a solver by

asking what percentage of the problems are solved within a fraction of the best. This is given by

the performance profile,

hj(τ) =

∑N
i=1 I{rij≤τ}

N
,

where N = |P| (the cardinality of P) and I{A} is the indicator function such that I{A} = 1 if A

is true and 0 otherwise. Hence, better solvers have profiles that are above and to the left of the
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others.

Motivated by the computational models in [Molka et al., 2010] and [Kestor et al., 2013], we

assume that the energy efficiency of single precision is between 2 and 3.6 times higher than double

precision [Fagan et al., 2016, Galal and Horowitz, 2011]. The storage and communication have less

optimistic savings since we expect the cost of both to scale linearly with the number of bits used

in the mantissa. Accordingly, we focus primarily on the model where half- and single-precision

evaluations cost 1/4 and 1/2 that of a double evaluation, respectively. This gives a conservative

estimate for energy cost and a favorable one for execution time. For a given problem and solver,

we define adjusted calls:

Adj. calls =
∑

p ∈ {0,1,...,P}

(# bits for prec. p)× (# func. calls at prec. p)

# bits in prec. P
. (5.14)

Figures 5.1 and 5.2 show performance profiles for the Python and Julia implementations of CUTEst,

respectively. All CUTEst problems had their first-order tolerance set to 10−5. Working from

right to left in both images, we can see that the first-order condition is steady across methods

provided that double-precision evaluations are ultimately available to the solver. When limited to

half (11 bits) or single (24 bits), the performance suffers, and a number of problems cannot be

solved. For the number of iterations in Python, we see that TROPHY and the double TR method

perform comparably. The Julia implementation shows that the iterations count suffers when using

low precision or TROPHY with many precision levels available for switching. This behavior is

expected for low precision since the solver may never achieve the desired accuracy and hence runs

longer, and for TROPHY since each precision switch requires a full iteration. For example, if 10

precision levels are available, TROPHY will take at least 10 iterations to complete. This limits the

usefulness of the method on small to medium problems and problems where the initial iterate is

close to the final solution. As anticipated, TROPHY shows a distinct advantage for adjusted calls.

The one exception is when there are many precision levels to cycle through, for the same reason

as above. Although the initial iterate might be close to optimal, the algorithm must still visit all

precision levels before breaking. The fact is made worse since each time the precision switches, two

evaluations at the highest precision are required. Using two or three widely spaces precision levels
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Figure 5.1: Performance profiles for Python implementation of unconstrained CUTEst problems of di-
mension < 100 solved to first-order tolerance of 10−5. Standard single and double TR methods compared
against TROPHY using single/double switching.

Figure 5.2: Performance profiles for Julia implementation of unconstrained CUTEst problems of dimension
< 100 solved to first-order tolerance of 10−5. Half, single, and double are standard TR methods using
corresponding precision. “S,D”, “H,S,D”, “8,11,17,24,53”, and “Every 5 bits” are TROPHY implementations
using different precision regimes. “Every 5 bits” starts at 8 bits and increases to 53 bits in increments of 5
bits. A finer precision hierarchy does not imply better performance.

yields strong results for the CUTEst set.

The wind retrieval example shows similar results. The switching criteria used here differs

slightly from the one presented in (5.10). Specifically, a baseline θpk is set after the first failed

iteration at the current precision level. The model predicted reduction (predk) is compared to the

baseline θpk for successive failures. If predk is small compared to the baseline θpk , then the precision
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Table 5.1: Average performance over ten initializations for single-precision TR, double-precision TR, and
TROPHY on PyDDA wind retrieval example. Adjusted calls indicate improved computational efficiency.
Half, single, and double costs are 1/4, 1/2, and 1 for linear and 1/16, 1/4, and 1 for quadratic adjustments,
respectively. Problem solved to ∥∇f(xfinal)∥2 < 10−3 above.

Tolerance
∥∇f∥ <

10−3

Half
calls

Single
calls

Double
calls

Adj.
calls

(linear)

Adj.
calls

(quad.)

ffinal ∥∇ffinal∥

Single - 3411 - 1706 853 5.3×
10−3

9.5 ×
10−4

Double - - 1877 1877 1877 4.5×
10−3

9.1 ×
10−4

TROPHY 465 1898 6 1071 510 4.7×
10−3

9.4 ×
10−4

is increased. We do not expect this to significantly change the qualitative results or behavior of

the method for this test case. We included two “adjusted call” columns: one for a linear decay

adjustment (memory and communication as above) and the other for quadratic decay (reduction in

energy consumption). We originally iterated until ∥∇f(xk)∥ < 10−6 but observed that the single

TR method failed to converge. Consequently, we loosened the stopping criterion as far as possible

while maintaining the correct qualitative behavior of the solution. TROPHY outperformed the

standard (double-precision TR) method in all cases, reducing the number of adjusted calls by 17%

to 73%.

Our results show a promising reduction in the relative cost over naive single or double TR

solvers. We expect that for many problems where function evaluations dominate linear algebra

costs for the TR subproblem, our time to solve will greatly benefit from the method.

5.6 Conclusion and Future Work

In this paper we introduced TROPHY, a TR method that exploits variable-precision data

types to lighten the computational burden of expensive function/gradient evaluations. We illus-

trated proof of concept for the algorithm by implementing it on the CUTEst set and PyDDA.

The full benefit of our work has not yet been realized. We look forward to implementing simi-
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Table 5.2: Problem solved to ∥∇f(xfinal)∥2 < 10−6 accuracy. The single-precision TR method failed to
converge with the TR radius falling below machine precision.

Tolerance
∥∇f∥ <

10−6

Half
calls

Single
calls

Double
calls

Adj.
calls

(linear)

Adj.
calls

(quad.)

ffinal ∥∇ffinal∥

Single - ∞ - FAIL FAIL 9.9×
10−7

3.9 ×
10−6

Double - - 5283 5283 5283 1.8×
10−7

9.6 ×
10−7

TROPHY 465 7334 601 4384 2464 1.9×
10−7

9.7 ×
10−8

.

lar tests on hardware that can realize the full benefit of lower energy consumption and reduced

memory/communication costs and ultimately shorten the time to solution. This will be especially

beneficial for large scale climate models.

We would also like to incorporate mixed precision into line-search methods given their pop-

ularity in quasi-Newton solvers. By incorporating the same ideas into highly optimized algorithms

such as the SciPy implementation of L-BFGS, we could easily deploy mixed precision to a wide

population, dramatically reducing computational loads. Although TR methods are, computation-

ally speaking, more appropriate for expensive-to-evaluate objectives, there is no reason the same

ideas cannot be extended if practitioners prefer them.



Chapter 6

A Study of Scalar OPMs for use in Magnetoencephalography without Shielding

6.1 Introduction

Magnetoencephalography (MEG) is a non-invasive method to image brain function with high

spatial and temporal resolution [Supek and Aine, 2016]. Electrical currents in the brain give rise

to magnetic fields that are detectable on the exterior of the head. Exploring these MEG recordings

can provide insight into the functionality and disorders of the brain.

Since the early 1990s, superconducting quantum interference devices (SQUIDs) have been

stalwarts in the world of MEG [Cohen, 1972]. While the technology is mature and well understood,

several practical considerations are incentivizing alternate technologies. To start, SQUIDs must be

cooled requiring a bath of liquid helium which is expensive and subject to commodity shortages.

Also, the Dewar wall thickness sets a limit on the proximity of sensors to the scalp. Since the mag-

netic fields induced by neural currents in the brain are remarkably weak (hundreds of femto-Tesla

at the surface of the scalp), any additional separation between the source and the sensor adversely

impacts the signal-to-noise ratio (SNR) and the ability to localize brain activity. Furthermore, to

fit all users, the rigid Dewars are sized to fit large human heads, severely limiting their usefulness

on young children [Baillet, 2017].

Optically-pumped magnetometers (OPMs) are atomic sensors that, under certain conditions,

are capable of matching sensitivities observed with SQUIDs [Dang et al., 2010]. They operate

without cryogenics, eliminating the need for bulky Dewars, and can be placed within millimeters of

the scalp. OPMs open the door for wearable MEG systems that conform to a subject’s head and
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allow for free and natural movement during scanning [Boto et al., 2018]. To rival the sensitivities

of SQUIDS, OPMs must operate in the spin-exchange relaxation-free (SERF) regime [Kominis

et al., 2003, Allred et al., 2002]. However, the narrow linewidths of SERF OPMs [Allred et al.,

2002, Happer and Tang, 1977] limit the operating dynamic range to a few nano-Tesla or near zero-

field background. This means magnetically shielded rooms, and often additional large coils, are

necessary to cancel any ambient fields and reduce interference that can severely limit usefulness in

hospital environments.

An alternative to zero-field OPMs are total-field or scalar optically-pumped magnetometers,

which are being developed in microfabricated packages [Schwindt et al., 2004] or with high sensitiv-

ities [Sheng et al., 2013]. While they were first developed in the 1950s [Kastler, 1950] and used for

biomagnetic measurements since the 1970s [Livanov et al., 1978], only recently have they reached

noise floors sufficient for MEG applications and been demonstrated in small packaged sensors [Limes

et al., 2020c]. We investigate the use of scalar OPMs for MEG in this paper.

For total field magnetometers, the sensor orientation does not affect the measured field value

but only the achieved sensitivity. For that reason, total field magnetometers realize higher common-

mode rejection ratios than their vector counterparts [Limes et al., 2020b]. This allows for the

detection of very small signals in the presence of large background fields, making them well suited

for use in unshielded environments [Zhang et al., 2020a, Perry et al., 2020]. Since scalar OPMs are

less sensitive to their orientation, they are commonly used on moving or vibrating platforms for

unexploded ordinance detection (UXO), geophysical surveying, and exploration [Du et al., 2017,

David et al., 2004, Nabighian et al., 2005]. Work has begun on detecting brain signals in unshielded

environments [Limes et al., 2020c, Zhang et al., 2020b]. Recently, an exciting proof-of-concept

portable MEG system was constructed for use in Earth’s field with scalar magnetometers [Limes

et al., 2020a, Limes et al., 2020b], exhibiting their suitability for biomagnetic applications.

In this paper, we provide numerical characterizations of localization accuracy based on the

variability in sensor count, sensitivity, and the fidelity of the forward model using a single dipolar

source in a conducting sphere and large ambient field. We also investigate the influence of back-
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ground (or bias) field angle on the localization accuracy. We illustrate the validity of our method

by localizing a current dipole using a dry phantom and a scalar gradiometer array.

6.2 Models and algorithms

Following the general MEG method for dipole localization in a conducting sphere [Sarvas,

1987], the sources are modeled as current dipoles [Cohen and Hosaka, 1976] specified by their posi-

tion, orientation, and magnitude of directional current flow. Current dipoles give rise to magnetic

field patterns but are distinct from those of magnetic dipoles which can be thought of as small bar

magnets. We note that fields from current dipoles decay with the distance squared in contrast to

magnetic dipoles that decay with the distance cubed. The dipolar source is constrained to a depth

consistent with the cerebral cortex and represents a neural bundle firing in unison. The terms

ambient, background, and bias field are used synonymously.

In this paper, we focus on static analysis but similar methods can be used for time series

measurements through averaging, peak finding, Fourier transforms, and other processing tools.

The aim of localization is to determine the dipole location and moment that best conforms to

the measured data. In what follows, we describe a forward model, explain how it relates to the

optimization problem we use for localization, and then outline an algorithm to find sources of

neuronal activity.

6.2.1 Forward model

A forward model characterizes the magnetic field of a known source throughout space. We

consider the conducting sphere model of radius 9.1 cm provided in [Sarvas, 1987] and elaborated on

in [Mosher et al., 1999]. The authors show that the magnetic field at point r due to a dipole located

at point p can be written as the product of a solution kernel, L(r,p), and the dipole moment, q.

That is, for a dipole (p,q), the magnetic field at point r is

B(r,p,q) = L(r,p)q. (6.1)
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Figure 6.1: A current dipole at point p with moment q will generate a field at sensor location r
according to Eq. (6.1) and (6.2). The displacement vector is given by d = r− p.

The solution kernel, L, is given by

L(r,p) =
µ0

4π

[
∇pΦr

T − ΦI

Φ2
Cp

]
with Cp =


0 −pz py

pz 0 −px

−py px 0

 , (6.2)

where px, py, and pz are the components of p, and I is the identity matrix. Note that Φ ∈ R,

p, q, r, B, ∇pΦ ∈ R3, and Cp, I, L(r, p) ∈ R3×3. Defining relative position as d = r − p, the

scalar function Φ and its gradient with respect to p are given by

Φ(r,p) = ∥d∥
(
∥d∥ ∥r∥+ ∥r∥2 − pT r

)
(6.3)

∇pΦ(r,p) =

(
∥d∥2

∥r∥
+

dT r

∥d∥
+ 2∥d∥+ 2∥r∥

)
r−

(
∥d∥+ 2∥r∥+ dT r

∥d∥

)
p.

In the absence of fields from other magnetic sources, the measured signal, yi, of a scalar sensor

at location ri will be the norm of the superposition of the ambient field, a, and the dipolar field,

B, plus noise, ηi. That is, yi = ∥B(ri,p,q) + a∥ + ηi. We consider cases where the ambient field

is sufficiently large such that yi is always positive. Since the background fields we consider are

many orders of magnitude larger than the biomagnetic signals we aim to measure, i.e., micro vs.

femto-Telsa, we can treat scalar sensor readings as a superposition of the dipolar and ambient field,
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B(ri,p,q)+a, projected onto the ambient field’s direction. That is, letting â be the ambient field’s

unit vector, writing bi = B(ri,p,q) and assuming ∥bi∥ ≪ ∥a∥, the noiseless scalar magnetic field

at point ri is

∥a+ bi∥ =
√
∥a∥2 + 2aTbi + ∥bi∥2

≈
√
∥a∥2 + 2aTbi

= ∥a∥
√

1 + 2âTbi/∥a∥

≈ ∥a∥
(
1 + âTbi/∥a∥

)
(Taylor series)

= ∥a∥+ âTB(ri,p,q)
def
= fi. (6.4)

Thus for an MEG array with M sensors at points r1, r2, ..., rM , the forward model is

f =



âTL(r1,p)

âTL(r2,p)

...

âTL(rM ,p)


q+ ∥a∥1 (6.5)

where 1 is the vector of ones. This approximation is an affine function of q paving the way

for a simplified localization algorithm. Upon testing, we found that the difference between our

approximation and the precise forward model, i.e.,
∣∣fi − ∥a+ bi∥

∣∣, was below the noise floor used

and therefore negligible.

6.2.2 Gradiometry

Since we are interested in detecting weak brain signals dominated by large background fields,

filtering is paramount. Outside of laboratory settings, we expect the ambient field to vary over space

and time for many reasons including solar winds, passing vehicles, proximity to ferrous materials,

etc. The presence of magnetic fields from other unrelated sources necessitates gradiometry.

For simulations and experiment, we used two scalar magnetometers oriented radially as our

gradiometers. A primary sensor at rP was mounted on the surface of the conducting sphere and was
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intended to measure brain magnetic fields. The secondary sensor at rS was employed to sense the

background field but should, in principle, be far enough away to not detect biomagnetic signals. The

superscripts are not exponents. The distance or baseline between primary and secondary sensors is

4 cm in the radial direction. For this gradiometer arrangement, the forward model corresponding

to measured difference data, yP − yS , is

fP − fS = (âTL(rP ,p)q+ ∥a∥)− (âTL(rS ,p)q+ ∥a∥) (6.6)

= âT
(
L(rP ,p)− L(rS ,p)

)
q, (6.7)

which has no dependence on the magnitude of the bias field. The full gradiometer forward model

can be written as

fG(p,q) =



âT
(
L(rP1 ,p)− L(rS1 ,p)

)
âT
(
L(rP2 ,p)− L(rS2 ,p)

)
...

âT
(
L(rPM ,p)− L(rSM ,p)

)


q = A(p)q. (6.8)

The superscript denotes the gradiometer arrangement forward model. For the matrix A(p), we

treat the sensor locations as fixed henceforth. For primary and secondary sensor readings yP and

yS , respectively, the corresponding gradiometer measurement vector is given by

yG = yP − yS . (6.9)

With a forward model and data at our disposal, we can now formulate the optimization problem

to localize a dipole.

6.2.3 Optimization problem and algorithms

Given the forward model fG from (6.8), the goal is to find a dipole (p,q) that best explains

observed MEG data yG. We formulate this mathematically with the nonlinear least squares problem

min
p,q
∥fG(p,q)− yG∥2 = min

p,q
∥A(p)q− yG∥2 (6.10)
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which is convex in q but not in p. To address non-convexity, we break the problem into two parts

as outlined in [Ilmoniemi and Sarvas, 2019]. First, we find a point that is in the global optimum’s

basin of attraction as a warm start, then employ an iterative nonlinear solver.

For the warm start, we grid the variable p over the sphere’s interior at K locations. Spacing

of 2 cm is typically sufficient although we used 1.1 cm here. For each grid value of p, the optimal

value of q is easily found by solving an ordinary least squares problem, so q does not need to be

discretized. In particular, at a fixed grid point p = pk with k ∈ {1, . . . ,K}, the optimal solution

q∗
k to problem (6.10) is

q∗
k =

(
A(pk)

TA(pk)
)−1

A(pk)
TyG. (6.11)

After finding location/moment least square pairs, (pk,q
∗
k), for all K discrete locations, the optimal

index o is given by

o = argmin
k∈{1,...,K}

∥A(pk)q
∗
k − yG∥2. (6.12)

Hence, we use pair (po,q
∗
o) as a warm start for a continuous optimization algorithm. In our

simulations, we used L-BFGS [Liu and Nocedal, 1989] as the continuous optimization algorithm,

which is a quasi-Newton method, although others could be used. L-BFGS iterates through the

space of possible values for (p,q) to find a fit minimizing residual error.

6.3 Numerical Experiments

We ran a variety of simulations to understand limitations and requirements for scalar OPM

use in MEG systems with strong ambient fields. In all simulations we use gradiometry. As such,

the sensor count reflects the number of gradiometers, not the number of sensors (each gradiometer

has a primary and secondary sensor). We provide multiple curves in each experiment indicating

performance for different relative dipole strengths (RDS) defined by

RDS =
Dipole strength (nAm)(

Sensor sensitivity (fT/
√
Hz )

)(√
Bandwidth (Hz)

) . (6.13)

This figure of merit is chosen to easily relate the results to a variety of magnetometers and ex-

periments with different noise, bandwidth, and dipole source strengths. Throughout this paper,
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RDS Sensor sensitivity (fT/
√
Hz)

0.1 1.0 10.0 100.0

B
a
n
d
w
id
th

(H
z
) 1 100.000 10.000 1.000 0.100

5 44.721 4.472 0.447 0.045
10 31.623 3.162 0.316 0.032
50 14.142 1.414 0.141 0.014
100 10.000 1.000 0.100 0.010
500 4.472 0.447 0.045 0.004
1000 3.162 0.316 0.032 0.003

Table 6.1: Relative dipole strength (RDS) in units of nAm/fT for a physiological neuronal current
dipole of magnitude 10 nAm over different bandwidths and sensitivities.

bandwidth refers to the signal’s frequency content and the corresponding filter used for signal

extraction rather than sensor bandwidth which is related to the magnetometer’s specifications.

Signals with narrow bandwidths are easily recovered with band-pass filters. On the other hand, a

wide-band signal requires an extensive filter that includes noise across a broader spectrum effec-

tively lowering the SNR. Although we focus on bandwidth, noise reduction is also accomplished

by averaging; taking the mean of 100 measurements is equivalent to reducing the bandwidth by a

factor of 10. For clarity, we focus primarily on bandwidth but understand that averaging can be

used instead. A typical physiological current dipole generated by synchronous neural activity is

10 nAm [Hämäläinen et al., 1993]. In our experiments, we used a scalar OPM sensor with a noise

floor of 70 fT/
√
Hz [Gerginov et al., 2020] and measurement bandwidth of 100 Hz. For these OPM

parameters, we then varied the dipole strength for simplicity in our simulation. A 10 nAm dipole

gives an RDS of 0.014 nAm/fT. See Table 6.1 for conversions between bandwidths and sensitivities.

Each experiment consists of 10,000 dipoles randomly drawn from a specified volume. All

dipoles in this paper have a random orientation that is tangential to the spherical surface. To

generate scalar sensor data for a “true” simulated dipole (pT,qT), we first calculate the dipolar field

from Equations 6.1, 6.2, and 6.3 then add it to the ambient field. We take the magnetic field norm

at all sensor locations (both primary and secondary) to give noiseless sensor readings. A random

Gaussian vector with zero mean and standard deviation of 700 fT (70 fT/
√
Hz times

√
100Hz) is

drawn and added to the noiseless measurement vector. Finally, we subtract the secondary from the
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Figure 6.2: Typical 32 sensor arrangement using Fibonacci spiral with bias field along z-axis. Green
dots are locations of simulated dipoles drawn randomly with surface depth of 2 – 3.5 cm. Gridline
spacing is 5 cm.

primary sensor readings to give the gradiometer measurement vector in (6.9). We can then employ

the algorithm outlined in Section 6.2.3 with the generated gradiometer measurement vector as our

input.

For each simulation, the algorithm returns an estimated dipole, (p̃, q̃), which is compared

with the true dipole through localization error ∥pT − p̃∥. Although we must estimate q, we are

not concerned with it and focus on dipole location error alone. We use median and other quantile

based error over 10,000 simulations to evaluate accuracy.

Except for bias field orientation simulations, sensors were placed on the upper half of a

hemisphere along a Fibonacci spiral [Vogel, 1979, González, 2010] which is a parametric curve

giving nearly uniform coverage over a spherical surface. The lower boundary of the hemisphere is

the xy-plane. We outline our numerical simulations in detail below. A typical sensor arrangement

is shown in Figure 6.2. Since we assume scalar sensors, the orientation of the OPM is not important

and the blue arrows denote the direction of the large bias field assumed at the location of the sensor.
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6.3.1 Vector vs. scalar sensor comparison

Usually, MEG is recorded with directional sensors, measuring a single component of the

magnetic field vector. We will denote them as “vector” sensors for simplicity, even though the full

vector field is not measured. In contrast, scalar sensors measure the total magnitude of the field

independent of orientation.

To give the reader a better idea of how scalar and vector sensors compare, Figure 6.3 shows

the median and middle 50th quantile error for vector and scalar sensors, as well as their gradiometry

counterparts. We varied the number of sensors and RDS. For each simulation, the same dipole-

generated fields measured by all four sensor varieties. Vector sensors were oriented normal to the

conducting sphere surface, detecting radial components of the magnetic field. For both scalar sensor

varieties, we assume that the orientation of the background field is provided to the forward model.

Dipoles were drawn uniformly at random within the upper half of the hemisphere at a depth of 2

– 3.5 cm to mimic activity on the cortex and with random tangential orientations.

Both vector sensor arrangements perform better than their scalar versions, independent of

sensor count and dipole strength. Nevertheless, it can be seen that the difference is about a factor

of two and that sensor count and SNR have a much larger effect on the localization error than the

type of sensor.

6.3.2 Dependence on sensor count

Increasing the number of sensors ostensibly improves localization accuracy. Simulations were

conducted to quantify the impact of increased sensor count. Using the same setup as detailed

in Section 6.3.1, we varied the number of scalar gradiometers from 16 to 512 in powers of 2 and

recorded the localization error for each dipole simulated.

Figure 6.4 illustrates localization accuracy as a function of sensor count. As intuition suggests,

more sensors improve localization accuracy. It can be observed, however, that increasing the number

of gradiometers does not improve performance for the 0.01 nAm/fT curve over the sensor counts
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Figure 6.3: Each curve shows progression of error by sensor type. From left to right, sensor types
are vector, scalar, vector gradiometer, and scalar gradiometer. Median localization error and middle
50th quantile error (shaded region) vs. sensor types. Each curve corresponds to a different relative
dipole strength (RDS) of given sensor type and varies from a 16 to 512 sensor arrangement.

Figure 6.4: Median localization error (curve) and middle 50th quantile error of scalar gradiometers
(shaded region) vs. sensor count for different RDS. Bias field oriented in positive z-direction.
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considered. It is important to achieve a baseline sensitivity before adding more sensors since they

will not give the desired improvement. Assuming a 10 nAm dipole and bandwidth of 10Hz, a

suitable sensitivity is approximately 80 fT/
√
Hz and is currently attainable as demonstrated in

Section 6.4. We estimate that localization error of 1 cm can be reached for a 10 nAm

dipole using 128 sensors with a noise floor of 10 fT/
√
Hz and a bandwidth of 100 Hz.

Likewise, 1 mm localization accuracy is achievable with the same noise floor and dipole

strength by reducing the filter bandwidth to approximately 4 Hz. We note that similar

accuracy for a given dipole can be achieved by reducing bandwidth, increasing sensitivity, averaging

measurements, or increasing sensor count. For example, 80 sensors at 1Hz or 128 sensors at 40Hz

averaged over 100 measurements with the same noise floor will also achieve 1mm accuracy. While

these simulations omit many practical considerations, they give an idea of the system complexity

needed to achieve reasonable localization results.

6.3.3 Bias field angle dependence

We now consider the case where a subject is undergoing MEG measurement in a spatially

homogeneous and static bias field. Suppose the subject is free to rotate and move their head

throughout the measurement process. By fixing a reference frame to the subjects head, it will

appear as though the bias field changes its orientation over time. Does our ability to localize a

dipole (fixed with respect to the subject’s head) depend on its orientation relative to the bias

field? Are certain orientations better or worse for localization in general? How does do uniformly

oriented (all in the same direction) sensors arrays considered in this study compare to radially

mounted arrays as found in SQUID setups?

We make a few simplifying assumptions. First, the forward model is correctly specified and

accurate; this implies precise knowledge of sensor locations and orientation of the ambient field with

respect to the subject’s frame of reference at all points and times. Second, we assume the sensors

are isotropically sensitive, that is, their sensitivities are independent of orientation with respect to

the background field. In practice, sensors have dead-zones where the response of the magnetometer
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drops to zero, but we do not consider such cases at present.

We also assume that the magnetometers are not sensitive enough to detect a signal from

brain regions on the opposite side of the head. We therefore arrange a dense sensor array over

a localized area of the head. Sixteen gradiometers are arranged on the hemisphere’s surface in

two concentric circles about the z-axis. The circles have azimuthal angles of 7.5◦ and 15◦ with

gradiometers spaced every 45◦ in the polar direction. Dipoles were drawn from a region roughly

below the sensor array at a mean depth of 2.5 cm. A typical sensor arrangement with a subset of

simulated dipole locations is shown in Figure 6.5. For a simulated dipole, we attempted localization

for different bias field orientations varied from 0◦ (along the z-axis) to 90◦ (along the x-axis) in

10◦ increments. For comparison to typical radial vector sensor arrangements, we also simulated

radially mounted sensors in the same locations. All non-radial bias field orientations varied in the

xz-plane without a y component. Figure 6.6 shows accuracy as a function of the bias field.

Based on our simulations, performance deteriorates slightly as the bias field differs from the

axis of symmetry around which dipoles are drawn, at least when dipoles are tightly bunched. It is

also worth noting that radial sensors perform slightly worse than 0◦ orientation. We believe this

is due in part to the fact that dipoles close to the z-axis generate smaller projections on average

along the radial direction and hence have lower RDS. We conclude that it will be possible to image

with any bias field orientation and that the localization accuracy degrades by less than a factor of

two between radial and tangential bias field.

6.3.4 Sensitivity to uncertainty in forward model: sensor locations and orientations

Localization error depends heavily on the accurate specification of a forward model. In

practice, it is challenging to determine sensor location and orientation precisely, especially since an

advantage of uncooled sensors is that they can be placed in conformal geometries individual to every

subject. Accordingly, we’d like to understand how robust localization is to model misspecification.

To accomplish this, we fixed a presumptive sensor array for use in the forward model. We then

perturbed sensor locations and bias field orientation by adding Gaussian noise to give a true sensor
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Figure 6.5: Several different bias field orientations. Radial sensors point outward. Other arrange-
ments vary bias field in the azimuthal direction. Blue arrows indicate location of sensors and
orientation, green dots mark realizations of randomly drawn dipoles used to generate data. All mo-
ment oriented randomly, but tangential to spherical surface. Gridline spacing is 1 cm in z-direction
and 2 cm in x and y.

Figure 6.6: Median (curve) and middle 50th quantile (shaded region) localization error as a function
of bias or ambient field for different RDS. Radial arrangement measures radial component of field
at each sensor. Accuracy deteriorates slightly as bias field angle increases.
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Figure 6.7: Median localization accuracy (curve) and middle 50th quantile error for a 32 gradiome-
ters with varied perturbations to the sensor array used in forward model specification.

array. The standard deviations used varied from 0.1◦ to 3◦ for orientation and 0.1 mm to 3 mm

for sensor location. Perturbations to orientation were common across all sensors; this noise model

reflects uncertainty in the direction of a subject’s head in a uniform bias field rather than variations

of the bias field over space. Dipoles were drawn as in Section 6.3.1. Finally, we generated true data

by using a forward model based on the perturbed sensors and the randomly drawn dipole. For each

simulation, we calculated localization error using the presumptive forward model.

Localization error as a function of perturbation level for an array with 32 gradiometers is

shown in Figure 6.7. These results are consistent across changes in array size. Perturbations impact

the accuracy of sensitive arrays more. Small RDS values of 0.01 and 0.1 perform poorly even with

correctly specified forward models, hence, there is little accuracy to lose as perturbation levels

increase.

Correctly specifying sensor locations within 0.1 mm seems challenging for a wearable scalar

OPM MEG system. Commercially available optical scanners can localize sensors to 0.5 mm, but

the question of how well sensors remain in place during a recording persists, especially if the subject

can move their head. Simulations show that scalar OPMs are fairly robust to perturbations in bias
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field orientation, but more sensitive to the uncertainty in sensor location. Sensitivity to sensor

uncertainty is impacted by sensor count and dipole strength as well. In the case of 32 sensors (Fig.

6.7), increased forward model accuracy has little impact on dipoles with low RDS. It is therefore

imperative to increase sensitivity to a point before adding more sensors to improve localization

accuracy.

6.4 Phantom experiment

6.4.1 Experimental setup and data collection

To validate our method, we constructed a dry phantom to mimic a current dipole in a

conducting sphere [Ilmoniemi et al., 1985, Oyama et al., 2015, Uehara et al., 2008]. We constructed

a virtual sensor array based on a single scalar gradiometer using a scalar magnetometer concept

described in detail in Ref. [Gerginov et al., 2020]. The experiment was carried out inside a three

layer magnetically shielded chamber. The gradiometer had a fixed base distance and was used to

record many dipolar sources spread over a volume consecutively. The phantom setup is shown in

Figure 6.8. The gradiometer was based on two pulsed OPMs featuring 3 × 4.5 × 5 mm3 internal

volume vapor cells filled with 87Rb and 600 Torr Nitrogen N2 gas. The pulsed OPM concept is

described in detail in [Gerginov et al., 2020]; it is based on optically-driven spin precession [Bell

and Bloom, 1957] using amplitude-modulated pump light. A full description of the OPM is beyond

the scope of the present work but we point out that the only substantial difference in the sensors

used in this work are the larger, glass-blown vapor cell and the orthogonal pump and probe light

geometry compared to the parallel geometry in [Gerginov et al., 2020]. Each magnetometer had

a white-noise floor of 70 fT/
√
Hz in a 500 Hz bandwidth. The distance between magnetometers

(or baseline) of the gradiometer was 15mm. The dipolar sources were approximated by currents

flowing along the boundary of arcs with small subtended angle [Ilmoniemi et al., 1985] fabricated

on a Electroless nickel immersion gold (ENIG) printed circuit board (PCB). The dipoles each had

a length of 1mm. They were placed on a circle of radius 70mm and connected with thin twisted
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Figure 6.8: Phantom experiment setup.

wires at the center point of the circle. Neighboring dipoles on each PCB were separated by 1.42mm

center to center. They were activated independently with a current source. Three identical PCBs

were stacked together to place the dipoles on a sphere with radius 100mm, each PCB separated by

12.8mm at the location of the dipoles. The phantom was placed such that the central dipole was

11.7 mm from the closer vapor cell of the scalar gradiometer. A 150Hz sinusoidal signal of 25mV

across 1200Ω was applied to each dipole to mimic neuronal activity. This equates to a current of

20.8 µA over 1mm arc length and yielded a dipole strength of 20.8 nAm. The resultant field from

each dipolar source was recorded for 100 seconds from which we created a virtual MEG sensor

array. We picked a grid of 9 out of the 3 x 17 dipoles in our array. To mimic a realistic geometry,

the nine dipoles were spaced by roughly 12.5 mm in x- and z-directions. Data from the 9 dipole

or “virtual” sensors were used for localization.

6.4.2 Data processing

The virtual array exploits the fact that magnetic fields induced by a current dipole at a

point in space depends on relative and not absolute position. As such, we can relocate each dipole
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to a single point in space and vary sensor locations to mimic coverage over a subjects head. For

example, with a sensor at point s and dipoles at locations r1 and r2, displacements are given

by d1 = s − r1 and d2 = s − r2. If we treat r1 as the true dipole location then we can write

d2 = s− r2 + (r1 − r1) = (s+ r1 − r2)− r1 = s̃− r1, where s̃ is the location of the virtual sensor.

Geometrically, the two are equivalent but in the latter, we treat the dipole as fixed rather than the

sensor.

It should be noted that our simulations in Section 6.3 focused on arrays with sensors placed

on a spherical surface with uniform orientation, i.e., all pointing along the bias field. For the

phantom setup, treating the spatially varying dipole as fixed results in an equivalent array with

sensors orientated radially (pointing directly away from source). Since bias field orientation has

little impact on localization accuracy as shown in Section 6.3.3, our simulation results should serve

as a good proxy for the phantom. To be certain, we compare our experimental results to simulations

for an identical setup in Section 6.4.3.

Although the 150Hz periodic signal was common to all dipoles, the phase differed for each

virtual sensor since data collection started at different points in the cycle, i.e., not all recordings

began when the signal had peak amplitude. To localize, the data from each virtual sensor had to

be aligned in time (peak signal strengths must occur simultaneously). To accomplish this, we took

the Fourier Transform of the time series data at each sensor to recover amplitude and phase. That

is, for time series x(t), we took x̂(ω) = F{x(t)}. We found the phase, ϕ, of the 150Hz signal then

shifted all Fourier coefficients by −ϕ, i.e., x̂S(t) = x̂(t)e−iϕ. Once equipped with phase-aligned

data, we reconstructed our phase-shifted time series with xS(t) = F−1{x̂S(ω)}. Performing this

same procedure for all sensors in the virtual array, we aligned our time series data for localization.

Since the true dipole strength and magnetometer sensitivity were fixed in the experiment,

we varied filter bandwidth to change our figure of merit, relative dipole strength or RDS (see Eq.

6.13). We used three band-pass filters centered at 150Hz with bandwidths of 1Hz, 10Hz, and

100Hz, respectively, to process the phase-aligned time series data. Since the signal of interest lies

at 150Hz, decreasing filter bandwidth allows for rejection of noise at other frequencies thereby
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increasing the SNR. Noise reduction can be accomplished through averaging as well but we limit

our discussion to filter bandwidth here.

To process the data for localization, we considered our phase aligned times-series as a data

matrix, M ∈ R9×T , where T is the total number of time measurements. Mi,j denotes the entry

in the ith row and jth column of M . We split the 100 second time-series into roughly single

period/cycle subsets. Since we sampled at 1,000 measurements per second, a single period of a

150Hz signal contains approximately seven time measurements. Each row represents time-series

data for a fixed sensor and each column is a measurement vector across sensors at a fixed time.

Letting M (t) ∈ R9×7 be the measurement sub-matrix for the tth subset and defining

k∗ = argmax
j∈{1,...,7}

[
9∑

i=1

(
M

(t)
i,j

)2]
, (6.14)

we used the k∗ column of M (t) for the tth sensor reading. In principle, the max power reading cor-

responds to peaks or troughs in the signal where the SNR is maximized. We used these “maximum

power” columns to localize with for each subset.

6.4.3 Localization of experimental data and comparison to simulations

After discarding the first and last 2 seconds of each data set to to avoid artifacts at the

beginning and end of each recording, we were left with 9,600 sensor readings. For a dipole at point

(0, 7, 0) cm oriented in the x-direction with RDS of 2.98, 0.951, and 0.298, the median localization

errors were 5.0 mm, 5.5 mm, and 11.5 mm for measured data. respectively. The left panel of

Figure 6.9 shows elevation views of estimated dipole locations for the data measured using the

phantom virtual array.

We compared our experimental results to simulations for an identical setup. We estimated

that each dipole location was known to within 0.75mm for two reasons. First, our dipoles are not

true dipoles; they are wires with a spatial extent of 1mm. We allow for 0.5mm uncertainty due

to this “smearing”. Second, we were limited to 0.25mm accuracy for spatial measurements. In

future work, we would like to change our physical model to account for the spatial extent of the
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“dipole” but, as a first-step, account for it now through uncertainty. We estimated that the bias

field is known within 3◦ ; the variability here stems from slight imperfections in the construction

of the phantom more so than ambiguity in the direction of the bias field. Fixing the simulated

Figure 6.9: Elevation views of localization results for phantom array. Heavy red dots indicate true
dipole location, light green dots show dipole location estimates for 10,000 field measurements. Blue
arrows show sensor locations and orientations. Scale in centimeters. Left: localization results for
data measured using phantom virtual array. Right: localization results for simulated data under
identical conditions. Gridline spacing is 1 cm

dipole at the same point in space, we generated 10,000 sensor readings using the method detailed in

Section 6.3.4. With the simulated sensor readings, we estimated the dipole’s location and compared

it to the known coordinates. The median localization errors were 3.3mm, 4.6mm, and 11.8mm

for RDS of 2.98, 0.951, and 0.298, respectively. The right panel of Figure 6.9 shows elevation

views of estimated dipole locations for simulated data. We note that both simulated and measured

data exhibit the same qualitative behavior. Although the localization errors for each respective

RDS differ, their orders of magnitude all agree and are well within a standard deviation of each

other. We note that the mean estimated location for measured data shows a bias; this indicates

a misspecified forward model as expected. Since the model errors are common to all localization

runs, this behavior is expected and of no concern.
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6.5 Conclusion

In this study, we considered single-source dipole localization with scalar OPM arrays in large

uniform ambient fields. We investigated how localization depends on dipole strength/sensor noise,

sensor count, bias field orientation, and uncertainty in forward models. We provided results of

numerical simulation as general guidelines for future work on scalar OPM MEG arrays in ambient

magnetic fields. Numerical results were validated experimentally by localizing a dipolar source on

a phantom using a virtual scalar gradiometer array.

Given current sensitivities of our scalar OPMs (around 70 fT/
√
Hz), localization of single

neuronal dipoles at the 10 nAm level with a 100 Hz bandwidth under optimal conditions is unlikely

unless the signal is averaged at least 100 times based on our simulations. With this level of averaging

and an array of 128 sensors, localization accuracy around 1 cm is predicted. Increasing sensitivity

by a factor of 10 to 7 fT/
√
Hz would allow localization accuracy of 1 mm with a 100 sensor array

and 100 averages, provided that the positions of the sensors can be determined with an accuracy of

0.5 mm. While this does not sound impossible, it is surely a challenging task. In these simulations,

we assumed an ideal case, where the background fields were uniform across the sensor array, i.e., no

close noise sources, and that the common-mode rejection of the gradiometer is sufficiently high to

cancel all ambient noise and the localization is limited purely by sensor noise. Future work involves

improved gradiometry to account for spatial variations in the ambient field and the localization

of multiple dipoles. While there are still many challenges to overcome, the prospect of unshielded

brain imaging with scalar magnetometers is exciting and would open many applications.
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Appendix A

Gradient Factors

The gradient for our approximate likelihood function is outlined in Equations 3.16-3.19 when

t cannot be solved for explicitly. To calculate ∇xℓ(x), we need expressions for the joint CGF and

a number of its derivatives. In particular, we require K
(i)
Gx+η(t) for i = 0, 1, 2, 3 and ∂

∂xK
(j)
Gx+η(t)

for j = 0, 1, 2. We present the necessary derivatives for gradient determination for the examples

listed in Section 3.5. Recall that t is the solution to the equation K ′
Gx+η(t) = y for a given x.

A.1 Floating point/rounding error

In what follows, let D be the floating point error matrix and M = D ⊙ (txT ). For fixed

point or rounding error with uncertainty parameter δ, the matrix reduces to D = δ1m1Tn such that

M = δtxT

KGx+η(t) =
σ2t2

2
+ t⊙Hx+ ln (sinh (M)⊘M)1 (A.1)

K ′
Gx+η(t) = σ2t+Hx+ [D⊙ coth (M)]x− n(1⊘ t) (A.2)

K ′′
Gx+η(t) = σ21−

[
D2 ⊙ csch2 (M)

]
x2 + n(1⊘ t2) (A.3)

K ′′′
Gx+η(t) = 2

[
D3 ⊙ coth (M)⊙ csch2 (M)

]
x3 − 2n(1⊘ t3). (A.4)
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Now differentiating the CGF and derivatives with respect x we have

∂

∂x
KGx+η(t) =t1T ⊙ [H+D⊙ coth (M)]− 1 (1⊘ x)

T
(A.5)

∂

∂x
K ′

Gx+η(t) =H+D⊙ coth (M)−D⊙M⊙ csch2 (M) (A.6)

∂

∂x
K ′′

Gx+η(t) =2D2 ⊙ csch2 (M)

⊙
[(

D⊙ t
(
x2
)T)⊙ coth (M)− 1xT

]
. (A.7)

A.2 Exponential clipping

In the case of exponential clipping, λ is the rate of the exponential for which elements of G

are drawn. Letting Λ = λ1m1Tn and C = S⊙ (txT ) derivative are given as

KGx+η(t) =
σ2t2

2
+ t⊙Hx+ (A⊙ ln [Λ⊘ (Λ−C)])1, (A.8)

K ′
Gx+η(t) = σ2t+Hx+ [A⊙ S⊘ (Λ−C)]x, (A.9)

K ′′
Gx+η(t) = σ21+

[
A⊘ (Λ−C)2

]
x2, (A.10)

K ′′′
Gx+η(t) = 2

[
A⊙ S⊘ (Λ−C)3

]
x3. (A.11)

Now differentiating the CGF and derivatives with respect x we have

∂

∂x
KGx+η(t) =

(
t1T

)
⊙ [H+A⊙ S⊘ (Λ−C)] (A.12)

∂

∂x
K ′

Gx+η(t) = H+A⊙
[
S⊘ (Λ−C)

+
(
txT

)
⊘ (Λ−C)2

]
(A.13)

∂

∂x
K ′′

Gx+η(t) = 2A⊙
[ (

1xT
)
⊘ (Λ−C)2

+ S⊙
(
t
(
x2
)T)⊘ (Λ−C)3

]
. (A.14)



Appendix B

Performance Plots for Hermite Interpolation Models

We have included several plots on the following pages showing the performance of trust region

solvers using standard interpolation models versus the Hermite interpolation models discussed in

Chapter 4. In particular, we show scaled function values in Figures B.1 and B.2 (see Eq. 4.48) and

gradient norms, ∥g∥, for the polynomial model by iteration count in Figures B.3 and B.4. We track

the model gradient since, in practice, we do not have access to the true gradient at each iteration.

When the gradient at the current iterate is interpolated, the true and model gradients match.
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Figure B.1: Scaled function values (y-axis) at each iteration (x-axis) using minimum norm solution
(MNS) for Hermite TR model with 1, 2, or 3 gradients interpolated. New gradient computed every
10 iterations. Standard interpolation based TR model included for comparison.
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Figure B.2: Scaled function values (y-axis) at each iteration (x-axis) regularized to BFGS approxi-
mate Hessian for Hermite TR model with 1, 2, or 3 gradients interpolated. New gradient computed
every 10 iterations. Standard interpolation based TR model included for comparison.
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Figure B.3: Model gradient norms ∥g∥ (y-axis) at each iteration (x-axis) using minimum norm so-
lution (MNS) for Hermite TR model with 1, 2, or 3 gradients interpolated. New gradient computed
every 10 iterations. Standard interpolation based TR model included for comparison.
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Figure B.4: Model gradient norms ∥g∥ (y-axis) at each iteration (x-axis) regularized to BFGS
approximate Hessian for Hermite TR model with 1, 2, or 3 gradients interpolated. New gradient
computed every 10 iterations. Standard interpolation based TR model included for comparison.
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