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Problem Setup

We consider the generative model y = Gx + η

I G ∈ Rm×n is a random matrix

I η ∈ Rm is a random vector

I x ∈ Rn is vector of model parameters

I y ∈ Rm is a vector of measurements

Given measurement vector y and distributional knowledge of
G and η, estimate x .
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Why should we care?

In practice, it is uncommon to know G precisely. Some causes are

I precision limits in measurement

I truncation error for memory savings

I sampling error

I human error

I modeling error
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Estimating home prices

Generative model y = Gx + η

Example

I G ∈ Rm×2, first column is square footage of home, second is
square footage of lot. We observe H = round(G ) to nearest
hundred foot (e.g. 1366 → 1400 sqft house)

I Gij can be modeled as a Uniform(Hij − δ,Hij + δ) for δ = 50
and Hij = 1400

I y ∈ Rm is selling price for corresponding home (e.g. $207k)

I GOAL: Estimate parameters x so we can model price based
on home and lot size accounting for uncertainty in G and η
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Maximum likelihood estimation

I Given observed data y and a likelihood function
L(x) = fY (y ; x), where fY (y ; x) is the PDF of y , find
parameters x that maximize the likelihood function,

argmaxxL(x)

I When components of y are independent, we can split PDF
such that

fY (y ; x) =
m∏
i=1

fYi
(yi ; x)

I We focus on maximizing the log-likelihood function

x̂MLE = argmaxx

{
m∑
i=1

ln [fYi
(yi ; x)]

}
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Justification of MLE for regression problem

For additive noise models y = Hx + η where H is known precisely
(all uncertainty is in η), we have

I argminx‖Hx − y‖2
2 is the MLE for Gaussian noise (ordinary

least squares)

I argminx‖Hx − y‖1 is the MLE for double exponential noise

I argminx‖Hx − y‖∞ is the MLE for uniform noise.

I For uncertainty in operator, total least squares, i.e.,

min
x ,U,η

‖[U , η]‖F

Subject to (H + U)x = y + η

is the MLE for i.i.d. Gaussian in H and η
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MLE for uncertainty in design matrix

I We seek a PDF for y = Gx + η to form a likelihood function

I Each component can be rewritten as a sum of RVs, i.e.,
yi =

∑n
j=1 Gijxj + ηi

I PDFs for sums of RVs are challenging to derive since they
generally require convolutions

Example

Let Z ∼ N (0, 1) and U ∼ Uniform(0, 1). The PDF for U + Z is

fU+Z (t) =
1√
2π

∫ 1

0
e−(t−s)2/2 ds.

No analytic form!

10 / 26



MLE for uncertainty in design matrix

I We seek a PDF for y = Gx + η to form a likelihood function

I Each component can be rewritten as a sum of RVs, i.e.,
yi =

∑n
j=1 Gijxj + ηi

I PDFs for sums of RVs are challenging to derive since they
generally require convolutions

Example

Let Z ∼ N (0, 1) and U ∼ Uniform(0, 1). The PDF for U + Z is

fU+Z (t) =
1√
2π

∫ 1

0
e−(t−s)2/2 ds.

No analytic form!

10 / 26



MLE for uncertainty in design matrix

I We seek a PDF for y = Gx + η to form a likelihood function

I Each component can be rewritten as a sum of RVs, i.e.,
yi =

∑n
j=1 Gijxj + ηi

I PDFs for sums of RVs are challenging to derive since they
generally require convolutions

Example

Let Z ∼ N (0, 1) and U ∼ Uniform(0, 1). The PDF for U + Z is

fU+Z (t) =
1√
2π

∫ 1

0
e−(t−s)2/2 ds.

No analytic form!

10 / 26



MLE for uncertainty in design matrix

I We seek a PDF for y = Gx + η to form a likelihood function

I Each component can be rewritten as a sum of RVs, i.e.,
yi =

∑n
j=1 Gijxj + ηi

I PDFs for sums of RVs are challenging to derive since they
generally require convolutions

Example

Let Z ∼ N (0, 1) and U ∼ Uniform(0, 1). The PDF for U + Z is

fU+Z (t) =
1√
2π

∫ 1

0
e−(t−s)2/2 ds.

No analytic form!

10 / 26



Table of Contents

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

11 / 26



Moment generating functions to the rescue

I The moment generating function (MGF) is a bilateral Laplace
transform of PDF given by

MY (t) = E(etY )

I Useful properties, i.e., for indep. RVs U, Z and a ∈ R

MaU+Z (t) = MU(at)MZ (t)

I When MGF exists, it uniquely characterizes the distribution

I With MGFs, convolution → multiplication

Example

Let Z ∼ N (0, 1) and U ∼ Uniform(0, 1). The MGF for U + Z is

MU+Z (t) =
(et − 1)e−t

2/2

t
.

Analytic form, no need for quadrature
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Moment and generating functions

I Using properties of MGFs, we have

MYi
(t) = MgT

i x+ηi
(t) = Mηi (t)

n∏
j=1

MGij
(txj)

I Importantly, we have expressed a complicated MGF for Yi as
the product of simple univariate MGFs for Gij and ηi .

I By inverting transform for MYi
, we can recover density, but

difficult in practice

I Use approximation method instead!
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Density approximation

Using MGFs to approximate PDFs allows for construction of a
likelihood. Some options are
I Edgeworth series [1]: poor tail behavior (polynomial series)
I Kernel density estimation [2, 3]: data intensive
I Saddle point approximation [4, 5, 6]: uses exponential tilting

and works well in practice

0

Figure: True density and several approximations when y = gTx + η
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Saddle point approximation

Saddle point approximation for PDF of RV Y is

fY (y) ≈

√
1

2πK ′′Y (t0)
eKY (t0)−yt0

I KY (t) = lnMY (t) is Cumulant Generating Function (CGF)

I t0 is the solution to K ′Y (t)− y = 0 (use Newton’s method)

15 / 26



Table of Contents

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

16 / 26



Approximate MLE

Using the saddle point approximation and eliminating constants
allows us to write the approximate log-likelihood function as

`(x) =
m∑
i=1

ln

{√
1

K ′′Yi
(ti )

eKYi
(ti )−yi ti

}

=
m∑
i=1

{
KYi

(ti )− tiyi −
1

2
ln
(
K ′′Yi

(ti )
)}

=
m∑
i=1

[
KgT

i x+ηi
(ti (x))− 1

2
ln
(
K ′′gT

i x+ηi
(ti (x))

)
− ti (x)yi

]
.

where gT
i is i th row of G and ti (x) is solution to K ′gT

i x+ηi
(t) = yi .

17 / 26



Optimization problem

The approximate MLE can be cast generically in vector form

argmaxx ,t 1T

(
KGx+η(t)− 1

2
ln
(
K ′′Gx+η(t)

))
− tTy

Subject to K ′Gx+η(t) = y

Example
When G ∼ Uniform(H − δ11T ,H + δ11T ) and η ∼ N (0, σ2I ),

argmaxx,t tT
(σ2

2
t+H x − y

)
+ 1T ln

[
sinh

(
δtxT

)
�
(
δtxT

)]
1

−1

2
1T ln

[
σ2 1− δ2 csch2

(
δtxT

)
x2
]

Subject to σ2t+Hx + δ coth
(
δtxT

)
x − n(1� t) = y .
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Gradients

I Despite constraint requiring a numeric solve, have gradients

I Letting q(x , t) = K ′Gx+η(t)− y be our constraint, then using
adjoint state method [7], we have

∇x` =
∂`

∂x
−
(
∂`

∂t

)(
∂q
∂t

)−1(∂q
∂x

)
. (1)

Unimportant, but for completeness, each factor is given by:

∂`

∂x
= 1T

(
∂

∂x
KGx+η(t)− 1

2

{
diag

(
K ′′Gx+η(t)

)}−1 ∂

∂x
K ′′Gx+η(t)

)
∂`

∂t
=

(
K ′Gx+η(t)− 1

2

(
K ′′′Gx+η(t)� K ′′Gx+η(t)

)
− y

)T

∂q
∂t

= diag
(
K ′′Gx+η(t)

)
,

∂q
∂x

=
∂

∂x
K ′Gx+η(t).
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Algorithms and Numerical Experiments

I With gradient information, we can employ first order methods

I For experiments, we opted for L-BFGS [8], a quasi-Newton
method, which solved problem rapidly

I Although possible to calculate derivatives analytically in many
cases, automatic differentiation can save time and trouble [9]
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Numerical Experiments

I To validate our method, we solved 10,000 problems. Using
the generative model y = GxTRU + η with components
drawn as follows:

I G ∈ Rm×n, from continuous uniform matrices on [0, 10]
I xTRU ∈ Rn, taken from the heavy-tailed Cauchy distribution to

make the use of prior information on the solution difficult
I η ∈ Rm has i.i.d. components drawn from a normal

distribution, i.e., ηi ∼ N (0, σ2)

I Assuming knowledge of σ2, and inferred value of δ by
observing H = round(G ) and y

I Used the proposed approximate MLE to estimate x
I Compared to ordinary least squares and total least squares
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Numerical Experiments

AML (proposed) OLS TLS
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Figure: Error metrics for simulations G ∈ R110×100 and σ = 1 over
10, 000 simulations. Design matrix rounded to ones spot. Left: box-plot
of relative error for different methods. Right: histogram of error ratio
‖xAML − xTRU‖/‖xOLS − xTRU‖. Values less than 1 indicate AML
outperformed competing method for identical data.
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Summary

I Maximum likelihood estimation is useful, but forming
likelihood functions for general noise models is difficult

I Presented a method to construct an approximate likelihood
function based on MGFs and the saddle point approximation
to avoid difficulties

I Found gradient of approximate likelihood using the adjoint
state method allowing use of off-the-shelf algorithms

I Showed results of numerical experiments illustrating its
effectiveness
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Thank you for your time!

Questions?
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