Approximate Maximum Likelihood Estimation for
Linear Regression with Operator Uncertainty

Richard Clancy
(joint with Stephen Becker)

University of Colorado at Boulder
Department of Applied Mathematics

March 13th
FRAMSC 2021

1/26



Outline

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

2/26



Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

«O>r «F»r <

it
v
a
i

Do
3/26



Problem Setup

We consider the generative model y = Gx +n
G € R™* " is a random matrix
n € R™ is a random vector

x € R" is vector of model parameters

vVvyYyVvyy

y € R™ is a vector of measurements
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Problem Setup

We consider the generative model y = Gx +n
G € R™* " is a random matrix

>

» 1 € R™is a random vector

> x € R" is vector of model parameters
>

y € R™ is a vector of measurements

Given measurement vector y and distributional knowledge of
G and 7, estimate x.
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Why should we care?

In practice, it is uncommon to know G precisely. Some causes are
P precision limits in measurement
> truncation error for memory savings
» sampling error
» human error
>

modeling error
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Estimating home prices

Generative model y = Gx +n
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Estimating home prices

Generative model y = Gx +n

Example

» G € R™*? first column is square footage of home, second is
square footage of lot. We observe H = round(G) to nearest
hundred foot (e.g. 1366 — 1400 sqft house)

» Gjj can be modeled as a Uniform(Hj; — 6, Hjj + &) for 6 =50
and H; = 1400

» y € R™ is selling price for corresponding home (e.g. $207k)

» GOAL: Estimate parameters x so we can model price based
on home and lot size accounting for uncertainty in G and 7
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Maximum likelihood estimation

» Given observed data y and a likelihood function
L(x) = fy(y; x), where fy(y; x) is the PDF of y, find
parameters x that maximize the likelihood function,

argmax, L(x)
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» Given observed data y and a likelihood function
L(x) = fy(y; x), where fy(y; x) is the PDF of y, find
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» When components of y are independent, we can split PDF
such that

m

fr(y:x) = [[ f.(yii x)

i=1

8/26



Maximum likelihood estimation

» Given observed data y and a likelihood function
L(x) = fy(y; x), where fy(y; x) is the PDF of y, find
parameters x that maximize the likelihood function,

argmax, L(x)

» When components of y are independent, we can split PDF
such that

fr(y:x) = [[ f.(yii x)

i=1

> We focus on maximizing the log-likelihood function

XMmLE = argmax, {Z In [fv, (vi; X)]}
i—1
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Justification of MLE for regression problem

For additive noise models y = Hx + 1) where H is known precisely
(all uncertainty is in 1), we have
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>

>
>
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MLE for uncertainty in design matrix

> We seek a PDF for y = Gx + n to form a likelihood function
» Each component can be rewritten as a sum of RVs, i.e.,
yi= Z]:l GijXj + 1
» PDFs for sums of RVs are challenging to derive since they
generally require convolutions

Example
Let Z ~ N(0,1) and U ~ Uniform(0,1). The PDF for U+ Z is

1
furz(t) = —=

1
—(t=s)?/2 4
e S.
V2r Jo

No analytic form!
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Moment generating functions to the rescue

» The moment generating function (MGF) is a bilateral Laplace
transform of PDF given by

My (t) = E(e')
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Moment generating functions to the rescue

» The moment generating function (MGF) is a bilateral Laplace
transform of PDF given by

My (t) = E(e")
» Useful properties, i.e., for indep. RVs U, Z and a € R

Mau4z(t) = Muy(at)Mz(t)
» When MGF exists, it uniquely characterizes the distribution

» With MGFs, convolution — multiplication

Example
Let Z ~ N(0,1) and U ~ Uniform(0,1). The MGF for U + Z is

(et — l)e*tz/2

Myiz(t) = :

Analytic form, no need for quadrature
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Moment and generating functions

» Using properties of MGFs, we have

My;(t) = Mg,TX+77, HMGU ()

13/26



Moment and generating functions

» Using properties of MGFs, we have

My;(t) = Mg,TX+77, HMGU ()

» Importantly, we have expressed a complicated MGF for Y; as
the product of simple univariate MGFs for Gj; and 7;.

13/26



Moment and generating functions

» Using properties of MGFs, we have

My;(t) = Mg,TX+77, HMGU ()

» Importantly, we have expressed a complicated MGF for Y; as
the product of simple univariate MGFs for Gj; and 7;.

» By inverting transform for My, we can recover density, but
difficult in practice

13/26



Moment and generating functions

» Using properties of MGFs, we have

My;(t) = Mg,TX+77, HMGU ()

» Importantly, we have expressed a complicated MGF for Y; as
the product of simple univariate MGFs for Gj; and 7;.

» By inverting transform for My, we can recover density, but
difficult in practice

» Use approximation method instead!
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Density approximation

Using MGFs to approximate PDFs allows for construction of a

likelihood. Some options are
» Edgeworth series [1]: poor tail behavior (polynomial series)
» Kernel density estimation [2, 3]: data intensive
» Saddle point approximation [4, 5, 6]: uses exponential tilting

and works well in practice

Probability Density Function Approximations

Density

Random Variable

Figure: True density and several approximations when y = g"x + 17
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Saddle point approximation

Saddle point approximation for PDF of RV Y is

1
£ ~ Ky (to)—yto
YO k() ©

» Ky(t) =InMy(t) is Cumulant Generating Function (CGF)
>ty is the solution to K{,(t) —y = 0 (use Newton's method)
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Approximate MLE

Using the saddle point approximation and eliminating constants
allows us to write the approximate log-likelihood function as

In{ L eKY.(r,-)—y,-ri}
Ky, (ti)

1{ ti) - 'yf—;'“(K%(t;))}
&

e (6060) = 3 0 (K (606)) — 10w

lx) =

Ma NNE

i

I
Ms

I
N

i

where gl_T is i*" row of G and t;(x) is solution to K;Txm-(t) =y
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Optimization problem

The approximate MLE can be cast generically in vector form

1
argmax, ; 17 (KGx+77(t) 2' (KGx+n( ))> o tTy

Subject to K/GHn(t) =y
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Optimization problem

The approximate MLE can be cast generically in vector form

1
argmax, ; 17 (KGx+77(t) 2' (KGx+n( ))> o tTy

Subject to K/GxH?(t) =y

Example
When G ~ Uniform(H — 6117, H +6117) and n ~ N(0, 021),

2
argmax, , tT(% t+Hx — y) +17 In [sinh (6th) @ ((5th)] 1

1
_E]IT In [021 — 02 csch? (5th) x2]
Subject to o’t+Hx + dcoth (6tx" ) x —n(Ll o t) = y.
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Gradients

» Despite constraint requiring a numeric solve, have gradients
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Gradients

» Despite constraint requiring a numeric solve, have gradients

> Letting q(x,t) = Kg,.,(t) — y be our constraint, then using
adjoint state method [7], we have

T () (M) ()

Unimportant, but for completeness, each factor is given by:

o 0 1, .. " -1 0
87 = ]lT (&(KGX-H?(t) - 5 {dlag (KGX+7’] )} 8X Gx+n(t)>

ol 1 '
Gt = (Koen(®) = 3 (KEen(0) 0 Kern(®) - )
oq .

9t = diag (Kgx+n(t)) )

oq 0

87 = aixKé?ern(t)'
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Algorithms and Numerical Experiments

> With gradient information, we can employ first order methods

» For experiments, we opted for L-BFGS [8], a quasi-Newton
method, which solved problem rapidly

P Although possible to calculate derivatives analytically in many
cases, automatic differentiation can save time and trouble [9]
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Numerical Experiments

» To validate our method, we solved 10,000 problems. Using
the generative model y = Gxtgry + 1 with components
drawn as follows:
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Numerical Experiments

» To validate our method, we solved 10,000 problems. Using
the generative model y = Gxtgry + 1 with components
drawn as follows:

> G € R™*", from continuous uniform matrices on [0, 10]
» xtru € R”, taken from the heavy-tailed Cauchy distribution to
make the use of prior information on the solution difficult
> 1 € R™ has i.i.d. components drawn from a normal
distribution, i.e., n; ~ N(0, 0?)
» Assuming knowledge of o2, and inferred value of § by
observing H = round(G) and y
» Used the proposed approximate MLE to estimate x

» Compared to ordinary least squares and total least squares
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Numerical Experiments

Box plot for relative error (Hx'\’ X’H’" Il Histogram of error ratios
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Figure: Error metrics for simulations G € R*9%190 and o = 1 over
10,000 simulations. Design matrix rounded to ones spot. Left: box-plot
of relative error for different methods. Right: histogram of error ratio
HXAML - XTRU”/HXOLS — XTRUH- Values less than 1 indicate AML
outperformed competing method for identical data.
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Summary

| 2

| 2

Maximum likelihood estimation is useful, but forming
likelihood functions for general noise models is difficult

Presented a method to construct an approximate likelihood
function based on MGFs and the saddle point approximation
to avoid difficulties

Found gradient of approximate likelihood using the adjoint
state method allowing use of off-the-shelf algorithms

Showed results of numerical experiments illustrating its
effectiveness
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Thank you for your time!

Questions?
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