Approximate Maximum Likelihood Estimation for Linear Regression with Operator Uncertainty

Richard Clancy (joint with Stephen Becker)

University of Colorado at Boulder Department of Applied Mathematics

> March 13th FRAMSC 2021

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

We consider the generative model $\textbf{\textit{y}} = \textbf{\textit{G}} \textbf{\textit{x}} + \boldsymbol{\eta}$

- $\boldsymbol{G} \in \mathbb{R}^{m \times n}$ is a random matrix
- \blacktriangleright $\eta \in \mathbb{R}^m$ is a random vector
- $\mathbf{x} \in \mathbb{R}^n$ is vector of model parameters
- $\mathbf{y} \in \mathbb{R}^m$ is a vector of measurements

We consider the generative model $\textbf{\textit{y}} = \textbf{\textit{G}} \textbf{\textit{x}} + \boldsymbol{\eta}$

- $\boldsymbol{G} \in \mathbb{R}^{m \times n}$ is a random matrix
- \blacktriangleright $\eta \in \mathbb{R}^m$ is a random vector
- $\mathbf{x} \in \mathbb{R}^n$ is vector of model parameters
- $\mathbf{y} \in \mathbb{R}^m$ is a vector of measurements

Given measurement vector \boldsymbol{y} and distributional knowledge of \boldsymbol{G} and $\boldsymbol{\eta}$, estimate \boldsymbol{x} .

In practice, it is uncommon to know \boldsymbol{G} precisely. Some causes are

- precision limits in measurement
- truncation error for memory savings
- sampling error
- human error
- modeling error

Generative model $\textbf{\textit{y}} = \textbf{\textit{G}}\textbf{\textit{x}} + \boldsymbol{\eta}$

Generative model $\boldsymbol{y} = \boldsymbol{G}\boldsymbol{x} + \boldsymbol{\eta}$

Example

G ∈ ℝ^{m×2}, first column is square footage of home, second is square footage of lot. We observe H = round(G) to nearest hundred foot (e.g. 1366 → 1400 sqft house)

Generative model $\boldsymbol{y} = \boldsymbol{G}\boldsymbol{x} + \boldsymbol{\eta}$

Example

- G ∈ ℝ^{m×2}, first column is square footage of home, second is square footage of lot. We observe H = round(G) to nearest hundred foot (e.g. 1366 → 1400 sqft house)
- G_{ij} can be modeled as a Uniform(H_{ij} − δ, H_{ij} + δ) for δ = 50 and H_{ij} = 1400

Generative model $\boldsymbol{y} = \boldsymbol{G}\boldsymbol{x} + \boldsymbol{\eta}$

Example

- G ∈ ℝ^{m×2}, first column is square footage of home, second is square footage of lot. We observe H = round(G) to nearest hundred foot (e.g. 1366 → 1400 sqft house)
- G_{ij} can be modeled as a Uniform(H_{ij} − δ, H_{ij} + δ) for δ = 50 and H_{ij} = 1400
- ▶ $\mathbf{y} \in \mathbb{R}^m$ is selling price for corresponding home (e.g. \$207k)

Generative model $\boldsymbol{y} = \boldsymbol{G}\boldsymbol{x} + \boldsymbol{\eta}$

Example

- G ∈ ℝ^{m×2}, first column is square footage of home, second is square footage of lot. We observe H = round(G) to nearest hundred foot (e.g. 1366 → 1400 sqft house)
- G_{ij} can be modeled as a Uniform(H_{ij} − δ, H_{ij} + δ) for δ = 50 and H_{ij} = 1400
- ▶ $\mathbf{y} \in \mathbb{R}^m$ is selling price for corresponding home (e.g. \$207*k*)
- GOAL: Estimate parameters x so we can model price based on home and lot size accounting for uncertainty in G and η

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

Maximum likelihood estimation

Given observed data y and a likelihood function
L(x) = f_Y(y; x), where f_Y(y; x) is the PDF of y, find parameters x that maximize the likelihood function,

 $\operatorname{argmax}_{\boldsymbol{x}} L(\boldsymbol{x})$

Maximum likelihood estimation

Given observed data y and a likelihood function
L(x) = f_Y(y; x), where f_Y(y; x) is the PDF of y, find parameters x that maximize the likelihood function,

 $\operatorname{argmax}_{\boldsymbol{x}} L(\boldsymbol{x})$

When components of y are independent, we can split PDF such that

$$f_{\boldsymbol{Y}}(\boldsymbol{y};\boldsymbol{x}) = \prod_{i=1}^m f_{Y_i}(y_i;\boldsymbol{x})$$

Maximum likelihood estimation

Given observed data y and a likelihood function
L(x) = f_Y(y; x), where f_Y(y; x) is the PDF of y, find parameters x that maximize the likelihood function,

 $\operatorname{argmax}_{\boldsymbol{x}} L(\boldsymbol{x})$

When components of y are independent, we can split PDF such that

$$f_{\boldsymbol{Y}}(\boldsymbol{y};\boldsymbol{x}) = \prod_{i=1}^m f_{Y_i}(y_i;\boldsymbol{x})$$

We focus on maximizing the log-likelihood function

$$\hat{\boldsymbol{x}}_{MLE} = \operatorname{argmax}_{\boldsymbol{x}} \left\{ \sum_{i=1}^{m} \ln \left[f_{Y_i}(y_i; \boldsymbol{x}) \right] \right\}$$

8/26

4 2 5 2

Justification of MLE for regression problem

For additive noise models $y = Hx + \eta$ where H is known precisely (all uncertainty is in η), we have

Justification of MLE for regression problem

For additive noise models $y = Hx + \eta$ where H is known precisely (all uncertainty is in η), we have

• $\operatorname{argmin}_{x} || Hx - y ||_{2}^{2}$ is the MLE for Gaussian noise (ordinary least squares)

Justification of MLE for regression problem

For additive noise models $y = Hx + \eta$ where H is known precisely (all uncertainty is in η), we have

- $\operatorname{argmin}_{\boldsymbol{x}} \| \boldsymbol{H} \boldsymbol{x} \boldsymbol{y} \|_{2}^{2}$ is the MLE for Gaussian noise (ordinary least squares)
- $\operatorname{argmin}_{x} \| Hx y \|_{1}$ is the MLE for double exponential noise

For additive noise models $y = Hx + \eta$ where H is known precisely (all uncertainty is in η), we have

- $\operatorname{argmin}_{\boldsymbol{x}} \| \boldsymbol{H} \boldsymbol{x} \boldsymbol{y} \|_{2}^{2}$ is the MLE for Gaussian noise (ordinary least squares)
- $\operatorname{argmin}_{x} \| Hx y \|_{1}$ is the MLE for double exponential noise
- $\operatorname{argmin}_{\mathbf{x}} \| \mathbf{H}\mathbf{x} \mathbf{y} \|_{\infty}$ is the MLE for uniform noise.

For additive noise models $y = Hx + \eta$ where H is known precisely (all uncertainty is in η), we have

- $\operatorname{argmin}_{\boldsymbol{x}} \| \boldsymbol{H} \boldsymbol{x} \boldsymbol{y} \|_{2}^{2}$ is the MLE for Gaussian noise (ordinary least squares)
- $\operatorname{argmin}_{x} \| Hx y \|_{1}$ is the MLE for double exponential noise
- $\operatorname{argmin}_{\mathbf{x}} \| \mathbf{H}\mathbf{x} \mathbf{y} \|_{\infty}$ is the MLE for uniform noise.
- ▶ For uncertainty in operator, total least squares, i.e.,

$$\min_{oldsymbol{x},oldsymbol{U},oldsymbol{\eta}} \| [oldsymbol{U},oldsymbol{\eta}] \|_F$$

Subject to $(oldsymbol{H}+oldsymbol{U})oldsymbol{x}=oldsymbol{y}+oldsymbol{\eta}$

is the MLE for i.i.d. Gaussian in $oldsymbol{H}$ and η

For additive noise models $y = Hx + \eta$ where H is known precisely (all uncertainty is in η), we have

- $\operatorname{argmin}_{\boldsymbol{x}} \| \boldsymbol{H} \boldsymbol{x} \boldsymbol{y} \|_{2}^{2}$ is the MLE for Gaussian noise (ordinary least squares)
- $\operatorname{argmin}_{x} \| Hx y \|_{1}$ is the MLE for double exponential noise
- $\operatorname{argmin}_{\mathbf{x}} \| \mathbf{H}\mathbf{x} \mathbf{y} \|_{\infty}$ is the MLE for uniform noise.
- ▶ For uncertainty in operator, total least squares, i.e.,

$$\min_{oldsymbol{x},oldsymbol{U},oldsymbol{\eta}} \| [oldsymbol{U},oldsymbol{\eta}] \|_F$$

Subject to $(oldsymbol{H}+oldsymbol{U})oldsymbol{x}=oldsymbol{y}+oldsymbol{\eta}$

is the MLE for i.i.d. Gaussian in $oldsymbol{H}$ and η

• We seek a PDF for $\boldsymbol{y} = \boldsymbol{G}\boldsymbol{x} + \boldsymbol{\eta}$ to form a likelihood function

- We seek a PDF for $\textbf{y} = \textbf{G}\textbf{x} + \eta$ to form a likelihood function
- Each component can be rewritten as a sum of RVs, i.e., $y_i = \sum_{j=1}^{n} G_{ij} x_j + \eta_i$

- We seek a PDF for $\textbf{y} = \textbf{G}\textbf{x} + \eta$ to form a likelihood function
- Each component can be rewritten as a sum of RVs, i.e., $y_i = \sum_{j=1}^{n} G_{ij} x_j + \eta_i$
- PDFs for sums of RVs are challenging to derive since they generally require convolutions

- We seek a PDF for $\textbf{y} = \textbf{G}\textbf{x} + \eta$ to form a likelihood function
- Each component can be rewritten as a sum of RVs, i.e., $y_i = \sum_{j=1}^n G_{ij} x_j + \eta_i$
- PDFs for sums of RVs are challenging to derive since they generally require convolutions

Example

Let $Z \sim \mathcal{N}(0,1)$ and $U \sim \mathsf{Uniform}(0,1)$. The PDF for U+Z is

$$f_{U+Z}(t) = rac{1}{\sqrt{2\pi}} \int_0^1 e^{-(t-s)^2/2} \, ds.$$

No analytic form!

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

The moment generating function (MGF) is a bilateral Laplace transform of PDF given by

$$M_Y(t) = \mathbb{E}(e^{tY})$$

The moment generating function (MGF) is a bilateral Laplace transform of PDF given by

$$M_Y(t) = \mathbb{E}(e^{tY})$$

▶ Useful properties, i.e., for indep. RVs U, Z and $a \in \mathbb{R}$

$$M_{aU+Z}(t) = M_U(at)M_Z(t)$$

The moment generating function (MGF) is a bilateral Laplace transform of PDF given by

$$M_Y(t) = \mathbb{E}(e^{tY})$$

▶ Useful properties, i.e., for indep. RVs U, Z and $a \in \mathbb{R}$

$$M_{aU+Z}(t) = M_U(at)M_Z(t)$$

When MGF exists, it uniquely characterizes the distribution

The moment generating function (MGF) is a bilateral Laplace transform of PDF given by

$$M_Y(t) = \mathbb{E}(e^{tY})$$

▶ Useful properties, i.e., for indep. RVs U, Z and $a \in \mathbb{R}$

$$M_{aU+Z}(t) = M_U(at)M_Z(t)$$

- When MGF exists, it uniquely characterizes the distribution
- With MGFs, convolution \rightarrow multiplication

The moment generating function (MGF) is a bilateral Laplace transform of PDF given by

$$M_Y(t) = \mathbb{E}(e^{tY})$$

▶ Useful properties, i.e., for indep. RVs U, Z and $a \in \mathbb{R}$

$$M_{aU+Z}(t) = M_U(at)M_Z(t)$$

- When MGF exists, it uniquely characterizes the distribution
- With MGFs, convolution \rightarrow multiplication

Example

Let $Z \sim \mathcal{N}(0,1)$ and $U \sim$ Uniform(0,1). The MGF for U+Z is

$$M_{U+Z}(t) = rac{(e^t - 1)e^{-t^2/2}}{t}$$

Analytic form, no need for quadrature

Using properties of MGFs, we have

$$M_{\mathbf{Y}_i}(t) = M_{\mathbf{g}_i^T \mathbf{x} + \eta_i}(t) = M_{\eta_i}(t) \prod_{j=1}^n M_{\mathcal{G}_{ij}}(tx_j)$$

Using properties of MGFs, we have

$$M_{Y_i}(t) = M_{\mathbf{g}_i^T \mathbf{x} + \eta_i}(t) = M_{\eta_i}(t) \prod_{j=1}^n M_{G_{ij}}(tx_j)$$

• Importantly, we have expressed a complicated MGF for Y_i as the product of simple univariate MGFs for G_{ij} and η_i .

Using properties of MGFs, we have

$$M_{Y_i}(t) = M_{\mathbf{g}_i^T \mathbf{x} + \eta_i}(t) = M_{\eta_i}(t) \prod_{j=1}^n M_{G_{ij}}(tx_j)$$

- Importantly, we have expressed a complicated MGF for Y_i as the product of simple univariate MGFs for G_{ij} and η_i .
- By inverting transform for M_{Y_i}, we can recover density, but difficult in practice

Using properties of MGFs, we have

$$M_{\mathbf{Y}_i}(t) = M_{\mathbf{g}_i^T \mathbf{x} + \eta_i}(t) = M_{\eta_i}(t) \prod_{j=1}^n M_{G_{ij}}(t\mathbf{x}_j)$$

- Importantly, we have expressed a complicated MGF for Y_i as the product of simple univariate MGFs for G_{ij} and η_i.
- By inverting transform for M_{Y_i}, we can recover density, but difficult in practice
- Use approximation method instead!

Density approximation

Using MGFs to approximate PDFs allows for construction of a likelihood. Some options are

- Edgeworth series [1]: poor tail behavior (polynomial series)
- Kernel density estimation [2, 3]: data intensive
- Saddle point approximation [4, 5, 6]: uses exponential tilting and works well in practice

Figure: True density and several approximations when $y = \mathbf{g}^T \mathbf{x} + \eta$ (14/26)

Saddle point approximation for PDF of RV Y is

$$f_Y(y) pprox \sqrt{rac{1}{2\pi {\cal K}_Y''(t_0)}} e^{{\cal K}_Y(t_0)-yt_0}$$

K_Y(t) = ln M_Y(t) is Cumulant Generating Function (CGF)
 t₀ is the solution to K'_Y(t) − y = 0 (use Newton's method)

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

Using the saddle point approximation and eliminating constants allows us to write the approximate log-likelihood function as

$$\ell(\mathbf{x}) = \sum_{i=1}^{m} \ln \left\{ \sqrt{\frac{1}{K_{Y_{i}}''(t_{i})}} e^{K_{Y_{i}}(t_{i}) - y_{i}t_{i}} \right\}$$

= $\sum_{i=1}^{m} \left\{ K_{Y_{i}}(t_{i}) - t_{i}y_{i} - \frac{1}{2} \ln \left(K_{Y_{i}}''(t_{i}) \right) \right\}$
= $\sum_{i=1}^{m} \left[K_{\mathbf{g}_{i}^{T}\mathbf{x}+\eta_{i}}(t_{i}(\mathbf{x})) - \frac{1}{2} \ln \left(K_{\mathbf{g}_{i}^{T}\mathbf{x}+\eta_{i}}''(t_{i}(\mathbf{x})) \right) - t_{i}(\mathbf{x})y_{i} \right].$

where \boldsymbol{g}_i^T is i^{th} row of \boldsymbol{G} and $t_i(\boldsymbol{x})$ is solution to $K'_{\boldsymbol{g}_i^T\boldsymbol{x}+\eta_i}(t)=y_i$.

Optimization problem

The approximate MLE can be cast generically in vector form

$$\begin{split} & \operatorname{argmax}_{\boldsymbol{x},\boldsymbol{t}} \qquad \mathbb{1}^T \left(\mathcal{K}_{\boldsymbol{G}\boldsymbol{x}+\boldsymbol{\eta}}(\boldsymbol{t}) - \frac{1}{2} \ln \left(\mathcal{K}_{\boldsymbol{G}\boldsymbol{x}+\boldsymbol{\eta}}''(\boldsymbol{t}) \right) \right) - \boldsymbol{t}^T \boldsymbol{y} \\ & \text{Subject to} \qquad \mathcal{K}_{\boldsymbol{G}\boldsymbol{x}+\boldsymbol{\eta}}'(\boldsymbol{t}) = \boldsymbol{y} \end{split}$$

Optimization problem

The approximate MLE can be cast generically in vector form

$$\begin{split} & \operatorname{argmax}_{\boldsymbol{x},\boldsymbol{t}} \qquad \mathbb{1}^T \left(\mathcal{K}_{\boldsymbol{G}\boldsymbol{x}+\boldsymbol{\eta}}(\boldsymbol{t}) - \frac{1}{2} \ln \left(\mathcal{K}_{\boldsymbol{G}\boldsymbol{x}+\boldsymbol{\eta}}''(\boldsymbol{t}) \right) \right) - \boldsymbol{t}^T \boldsymbol{y} \\ & \text{Subject to} \qquad \mathcal{K}_{\boldsymbol{G}\boldsymbol{x}+\boldsymbol{\eta}}'(\boldsymbol{t}) = \boldsymbol{y} \end{split}$$

Example

When $\boldsymbol{G} \sim \text{Uniform}(\boldsymbol{H} - \delta \mathbb{1}\mathbb{1}^T, \boldsymbol{H} + \delta \mathbb{1}\mathbb{1}^T)$ and $\boldsymbol{\eta} \sim \mathcal{N}(0, \sigma^2 \boldsymbol{I})$,

$$\operatorname{argmax}_{\mathbf{x},\mathbf{t}} \quad \mathbf{t}^{T} \left(\frac{\sigma^{2}}{2} \mathbf{t} + \mathbf{H} \mathbf{x} - \mathbf{y} \right) + \mathbb{1}^{T} \ln \left[\sinh \left(\delta \mathbf{t} \mathbf{x}^{T} \right) \oslash \left(\delta \mathbf{t} \mathbf{x}^{T} \right) \right] \mathbb{1}$$
$$- \frac{1}{2} \mathbb{1}^{T} \ln \left[\sigma^{2} \mathbb{1} - \delta^{2} \operatorname{csch}^{2} \left(\delta \mathbf{t} \mathbf{x}^{T} \right) \mathbf{x}^{2} \right]$$

Subject to
$$\sigma^2 t + Hx + \delta \coth(\delta tx^T) x - n(1 \oslash t) = y.$$

Gradients

Despite constraint requiring a numeric solve, have gradients

Gradients

- Despite constraint requiring a numeric solve, have gradients
- Letting $q(x, t) = K'_{Gx+\eta}(t) y$ be our constraint, then using adjoint state method [7], we have

$$\nabla_{\mathbf{x}}\ell = \frac{\partial\ell}{\partial\mathbf{x}} - \left(\frac{\partial\ell}{\partial\mathbf{t}}\right) \left(\frac{\partial\mathbf{q}}{\partial\mathbf{t}}\right)^{-1} \left(\frac{\partial\mathbf{q}}{\partial\mathbf{x}}\right). \tag{1}$$

Gradients

.

Despite constraint requiring a numeric solve, have gradients

Letting q(x, t) = K'_{Gx+η}(t) - y be our constraint, then using adjoint state method [7], we have

$$\nabla_{\mathbf{x}}\ell = \frac{\partial\ell}{\partial\mathbf{x}} - \left(\frac{\partial\ell}{\partial\mathbf{t}}\right) \left(\frac{\partial\mathbf{q}}{\partial\mathbf{t}}\right)^{-1} \left(\frac{\partial\mathbf{q}}{\partial\mathbf{x}}\right). \tag{1}$$

Unimportant, but for completeness, each factor is given by:

$$\frac{\partial \ell}{\partial \mathbf{x}} = \mathbb{1}^{T} \left(\frac{\partial}{\partial \mathbf{x}} \mathcal{K}_{\mathbf{G}\mathbf{x}+\boldsymbol{\eta}}(\mathbf{t}) - \frac{1}{2} \left\{ \operatorname{diag} \left(\mathcal{K}_{\mathbf{G}\mathbf{x}+\boldsymbol{\eta}}''(\mathbf{t}) \right) \right\}^{-1} \frac{\partial}{\partial \mathbf{x}} \mathcal{K}_{\mathbf{G}\mathbf{x}+\boldsymbol{\eta}}''(\mathbf{t}) \right)$$

$$\frac{\partial \ell}{\partial \mathbf{t}} = \left(\mathcal{K}_{\mathbf{G}\mathbf{x}+\boldsymbol{\eta}}'(\mathbf{t}) - \frac{1}{2} \left(\mathcal{K}_{\mathbf{G}\mathbf{x}+\boldsymbol{\eta}}''(\mathbf{t}) \oslash \mathcal{K}_{\mathbf{G}\mathbf{x}+\boldsymbol{\eta}}'(\mathbf{t}) \right) - \mathbf{y} \right)^{T}$$

$$\frac{\partial \mathbf{q}}{\partial \mathbf{t}} = \operatorname{diag} \left(\mathcal{K}_{\mathbf{G}\mathbf{x}+\boldsymbol{\eta}}''(\mathbf{t}) \right) ,$$

$$\frac{\partial \mathbf{q}}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \mathcal{K}_{\mathbf{G}\mathbf{x}+\boldsymbol{\eta}}'(\mathbf{t}) .$$

Problem Formulation

Maximum Likelihood Estimation and Its Limitations

Moment Generating Functions and Saddle Point Approximation

Approximate Likelihood Function and Optimization Problem

Algorithm and Numerical Experiments

Algorithms and Numerical Experiments

▶ With gradient information, we can employ first order methods

Algorithms and Numerical Experiments

- With gradient information, we can employ first order methods
- For experiments, we opted for L-BFGS [8], a quasi-Newton method, which solved problem rapidly

Algorithms and Numerical Experiments

- With gradient information, we can employ first order methods
- For experiments, we opted for L-BFGS [8], a quasi-Newton method, which solved problem rapidly
- Although possible to calculate derivatives analytically in many cases, automatic differentiation can save time and trouble [9]

To validate our method, we solved 10,000 problems. Using the generative model $y = Gx_{TRU} + \eta$ with components drawn as follows:

To validate our method, we solved 10,000 problems. Using the generative model $y = Gx_{TRU} + \eta$ with components drawn as follows:

• $\boldsymbol{G} \in \mathbb{R}^{m \times n}$, from continuous uniform matrices on [0, 10]

- To validate our method, we solved 10,000 problems. Using the generative model $y = Gx_{TRU} + \eta$ with components drawn as follows:
 - G ∈ ℝ^{m×n}, from continuous uniform matrices on [0, 10]
 x_{TRU} ∈ ℝⁿ, taken from the heavy-tailed Cauchy distribution to make the use of prior information on the solution difficult

- To validate our method, we solved 10,000 problems. Using the generative model $y = Gx_{TRU} + \eta$ with components drawn as follows:
 - G ∈ ℝ^{m×n}, from continuous uniform matrices on [0, 10]
 x_{TRU} ∈ ℝⁿ, taken from the heavy-tailed Cauchy distribution to make the use of prior information on the solution difficult
 n ⊂ ℝ^m has i.i.d. components drawn from a normal
 - η ∈ ℝ^m has i.i.d. components drawn from a normal distribution, i.e., η_i ~ N(0, σ²)

- To validate our method, we solved 10,000 problems. Using the generative model $y = Gx_{TRU} + \eta$ with components drawn as follows:
 - $\boldsymbol{G} \in \mathbb{R}^{m \times n}$, from continuous uniform matrices on [0, 10]
 - x_{TRU} ∈ ℝⁿ, taken from the heavy-tailed Cauchy distribution to make the use of prior information on the solution difficult
 - η ∈ ℝ^m has i.i.d. components drawn from a normal distribution, i.e., η_i ~ N(0, σ²)
- Assuming knowledge of σ², and inferred value of δ by observing *H* = round(*G*) and *y*

- To validate our method, we solved 10,000 problems. Using the generative model $y = Gx_{TRU} + \eta$ with components drawn as follows:
 - $\boldsymbol{G} \in \mathbb{R}^{m \times n}$, from continuous uniform matrices on [0, 10]
 - x_{TRU} ∈ ℝⁿ, taken from the heavy-tailed Cauchy distribution to make the use of prior information on the solution difficult
 - η ∈ ℝ^m has i.i.d. components drawn from a normal distribution, i.e., η_i ~ N(0, σ²)
- Assuming knowledge of σ², and inferred value of δ by observing *H* = round(*G*) and *y*
- Used the proposed approximate MLE to estimate x

- To validate our method, we solved 10,000 problems. Using the generative model $y = Gx_{TRU} + \eta$ with components drawn as follows:
 - $\boldsymbol{G} \in \mathbb{R}^{m \times n}$, from continuous uniform matrices on [0, 10]
 - x_{TRU} ∈ ℝⁿ, taken from the heavy-tailed Cauchy distribution to make the use of prior information on the solution difficult
 - η ∈ ℝ^m has i.i.d. components drawn from a normal distribution, i.e., η_i ~ N(0, σ²)
- Assuming knowledge of σ², and inferred value of δ by observing *H* = round(*G*) and *y*
- Used the proposed approximate MLE to estimate x
- Compared to ordinary least squares and total least squares

Figure: Error metrics for simulations $\boldsymbol{G} \in \mathbb{R}^{110 \times 100}$ and $\sigma = 1$ over 10,000 simulations. Design matrix rounded to ones spot. Left: box-plot of relative error for different methods. Right: histogram of error ratio $\|\boldsymbol{x}_{\text{AML}} - \boldsymbol{x}_{\text{TRU}}\| / \|\boldsymbol{x}_{\text{OLS}} - \boldsymbol{x}_{\text{TRU}}\|$. Values less than 1 indicate AML outperformed competing method for identical data.

 Maximum likelihood estimation is useful, but forming likelihood functions for general noise models is difficult

- Maximum likelihood estimation is useful, but forming likelihood functions for general noise models is difficult
- Presented a method to construct an approximate likelihood function based on MGFs and the saddle point approximation to avoid difficulties

- Maximum likelihood estimation is useful, but forming likelihood functions for general noise models is difficult
- Presented a method to construct an approximate likelihood function based on MGFs and the saddle point approximation to avoid difficulties
- Found gradient of approximate likelihood using the adjoint state method allowing use of off-the-shelf algorithms

- Maximum likelihood estimation is useful, but forming likelihood functions for general noise models is difficult
- Presented a method to construct an approximate likelihood function based on MGFs and the saddle point approximation to avoid difficulties
- Found gradient of approximate likelihood using the adjoint state method allowing use of off-the-shelf algorithms
- Showed results of numerical experiments illustrating its effectiveness

References

- [1] P. Hall, *The bootstrap and Edgeworth expansion*. Springer Science & Business Media, 2013.
- [2] E. Parzen, "On estimation of a probability density function and mode," The annals of mathematical statistics, vol. 33, no. 3, pp. 1065–1076, 1962.
- [3] M. Rosenblatt, "Remarks on some nonparametric estimates of a density function," The annals of mathematical statistics, vol. 27, no. 3, pp. 832–837, 1956.
- [4] H. E. Daniels, "Saddlepoint approximations in statistics," The annals of mathematical statistics, pp. 631–650, 1954.
- [5] R. Lugannani and S. Rice, "Saddle point approximation for the distribution of the sum of independent random variables," Advances in applied probability, vol. 12, no. 2, pp. 475–490, 1980.
- [6] O. Barndorff-Nielsen and D. R. Cox, "Edgeworth and saddle-point approximations with statistical applications," Journal of the Royal Statistical Society: Series B (Methodological), vol. 41, no. 3, pp. 279–299, 1979.
- [7] G. Strang, Computational methods for inverse problems, vol. 23. Wellesley-Cambridge Press, 2007.
- [8] J. Nocedal, "Updating quasi-Newton matrices with limited storage," Math. Comp., vol. 25, no. 151, pp. 773–782, 1980.
- [9] M. J. Weinstein and A. V. Rao, "Algorithm 984: Adigator, a toolbox for the algorithmic differentiation of mathematical functions in matlab using source transformation via operator overloading," ACM Transactions on Mathematical Software (TOMS), vol. 44, no. 2, p. 21, 2017.

Thank you for your time!

Questions?

<ロ><回><一><一><一><一><一><一</td>26/26